The Hippo pathway is a conserved signaling cascade that modulates tissue growth. Although its core elements are well defined, factors modulating Hippo transcriptional outputs remain elusive. Here we show that components of the steroid-responsive ecdysone (Ec) pathway modulate Hippo transcriptional effects in imaginal disc cells. The Ec receptor coactivator Taiman (Tai) interacts with the Hippo transcriptional coactivator Yorkie (Yki) and promotes expression of canonical Yki-responsive genes. Tai enhances Yki-driven growth, while Tai loss, or a form of Tai unable to bind Yki, suppresses Yki-driven tissue growth. This growth suppression is not correlated with impaired induction of canonical Hippo-responsive genes but with suppression of a distinct pro-growth program of Yki-induced/Tai-dependent genes, including the germline stem cell factors nanos and piwi. These data reveal Hippo/Ec pathway crosstalk in the form a Yki-Tai complex that collaboratively induces germline genes as part of a transcriptional program that is normally repressed in developing somatic epithelia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4519380 | PMC |
http://dx.doi.org/10.1016/j.devcel.2015.05.010 | DOI Listing |
J Adv Res
January 2025
Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China; Joint Laboratory for Research & Treatment of Spinal Cord Injury in Spinal Deformity, Capital Medical University, Beijing, China. Electronic address:
Introduction: Dihydropyrimidine dehydrogenase (DPD) is a major determinant of cancer 5-fluorouracyl (5-FU) resistance via its direct degradation. However, the mechanisms of tumoral DPD upregulation have not been fully understood.
Objectives: This study aimed to explore the role of S1PR2 in the regulation of tumoral DPD expression, identifying S1PR2 as the potential target for reversing 5-FU resistance.
Mol Biol Rep
January 2025
Department of Pathology and Laboratory Medicine, Baylor Scott and White Medical Center, Baylor College of Medicine, Temple, TX, USA.
Background: Brain intraparenchymal schwannoma is a rare clinical entity, generally curable with adequate resection.
Methods And Results: We describe a case in a male patient first presenting at 19 months of age, the youngest reported age for this lesion. It also appears to be the first case connected to a germline TSC2 p.
Cells
December 2024
Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan.
The Hippo pathway, a kinase cascade, coordinates with many intracellular signals and mediates the regulation of the activities of various downstream transcription factors and their coactivators to maintain homeostasis. Therefore, the aberrant activation of the Hippo pathway and its associated molecules imposes significant stress on tissues and cells, leading to cancer, immune disorders, and a number of diseases. Cellular senescence, the mechanism by which cells counteract stress, prevents cells from unnecessary damage and leads to sustained cell cycle arrest.
View Article and Find Full Text PDFBMC Genomics
January 2025
State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
Infectious spleen and kidney necrosis virus (ISKNV) is a highly virulent and rapidly transmissible fish virus that poses threats to the aquaculture of a wide variety of freshwater and marine fish. N6-methyladenosine (mA), recognized as a common epigenetic modification of RNA, plays an important regulatory role during viral infection. However, the impact of mA RNA methylation on the pathogenicity of ISKNV remains unexplored.
View Article and Find Full Text PDFJ Clin Endocrinol Metab
January 2025
Department of Pediatrics, Ribeirao Preto Medical School - University of Sao Paulo, Ribeirao Preto, Brazil.
Background: Adrenocortical cancer (ACC) is rare and aggressive, with YAP1 overexpression associated with poor outcomes in pediatric patients. In this study, we investigated the mechanisms by which YAP1 drives ACC progression and explored it as a potential target therapy.
Methods: YAP1 expression and methylation in ACC were analyzed from pediatric and adult cohorts.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!