Functional MRI during hyperbaric oxygen: Effects of oxygen on neurovascular coupling and BOLD fMRI signals.

Neuroimage

Graduate School of Biomedical Engineering, University of Texas at San Antonio, USA; Department of Ophthalmology, University of Texas Health Science Center, USA; Research Imaging Institute, University of Texas Health Science Center, USA; South Texas Veterans Health Care System, Department of Veterans Affairs, San Antonio, TX, USA. Electronic address:

Published: October 2015

Hyperbaric oxygen (HBO) therapy is used to treat a number of ailments. Improved understanding of how HBO affects neuronal activity, cerebral blood flow (CBF) and blood-oxygenation-level dependent (BOLD) changes could shed light on the role of oxygen in neurovascular coupling and help guide HBO treatments. The goal of this study was to test two hypotheses: i) activation-induced CBF fMRI response is not dependent on hemoglobin deoxygenation, and ii) activation-induced BOLD fMRI is markedly attenuated under HBO. CBF and BOLD fMRI of forepaw stimulation in anesthetized rats under HBO at 3 atmospheres absolute (ATA) were compared with normobaric air. Robust BOLD and CBF fMRI were detected under HBO. Inflow effects and spin-density changes did not contribute significantly to the BOLD fMRI signal under HBO. Analysis of the T2(⁎)-weighted signal at normobaric air and 1, 2 and 3ATA oxygen in the tissue and the superior sagittal sinus showed a strong dependence on increasing inhaled [O2]. Spontaneous electrophysiological activity and evoked local-field potentials were reduced under HBO. The differences between normobaric air and HBO in basal and evoked electrical activity could not fully account for the strong BOLD responses under HBO. We concluded that activation-induced CBF regulation in the brain does not operate through an oxygen-sensing mechanism and that stimulus-evoked BOLD responses and the venous T2(⁎)-weighted signals still have room to increase under 3ATA HBO. To our knowledge, this is the first fMRI study under HBO, providing insights into the effects of HBO on neural activity, neurovascular coupling, tissue oxygenation, and the BOLD signal.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4564303PMC
http://dx.doi.org/10.1016/j.neuroimage.2015.06.082DOI Listing

Publication Analysis

Top Keywords

bold fmri
16
hbo
13
neurovascular coupling
12
normobaric air
12
bold
9
hyperbaric oxygen
8
oxygen neurovascular
8
activation-induced cbf
8
cbf fmri
8
bold responses
8

Similar Publications

The population receptive field (pRF) method, which measures the region in visual space that elicits a blood-oxygen-level-dependent (BOLD) signal in a voxel in retinotopic cortex, is a powerful tool for investigating the functional organization of human visual cortex with fMRI (Dumoulin & Wandell, 2008). However, recent work has shown that pRF estimates for early retinotopic visual areas can be biased and unreliable, especially for voxels representing the fovea. Here, we show that a log-bar stimulus that is logarithmically warped along the eccentricity dimension produces more reliable estimates of pRF size and location than the traditional moving bar stimulus.

View Article and Find Full Text PDF

Background/aim: Tumors exhibit impaired blood flow and hypoxic areas, which can reduce the effectiveness of treatments. Characterizing these tumor features can inform treatment decisions, including the use of vasculature modulation therapies. Imaging provides insight into these characteristics, with techniques varying between clinical and preclinical settings.

View Article and Find Full Text PDF

Advances in the fMRI analysis of the default mode network: a review.

Brain Struct Funct

December 2024

Departamento de Psicobiología y Metodología en Ciencias del Comportamiento, Facultad de Psicología, Universidad Complutense de Madrid, Pozuelo de Alarcón, 28223, Madrid, Spain.

The default mode network (DMN) is a singular pattern of synchronization between brain regions, usually observed using resting-state functional magnetic resonance imaging (rs-fMRI) and functional connectivity analyses. In comparison to other brain networks that are primarily involved in attentional-demanding tasks (such as the frontoparietal network), the DMN is linked with self-referential activities, and alterations in its pattern of connectivity have been related to a wide range of disorders. Structural connectivity analyses have highlighted the vital role of the posterior cingulate cortex and the precuneus as integrative hubs, and advanced parcellation methods have further contributed to elucidate the DMN's regions, enriching its explanatory potential across cognitive functions and dysfunctions.

View Article and Find Full Text PDF

Urinary biomarker studies in cardiothoracic and kidney-sparing surgery have demonstrated renal protection by Remote Ischaemic PreConditioning (RIPC). RIPC intervention generates cycles of ischaemia and reperfusion of the limbs before the actual ischaemia of the target organ (e.g.

View Article and Find Full Text PDF

Concurrent optoacoustic tomography and magnetic resonance imaging of resting-state functional connectivity in the mouse brain.

Nat Commun

December 2024

Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland.

Resting-state functional connectivity (rsFC) has been essential to elucidate the intricacy of brain organization, further revealing clinical biomarkers of neurological disorders. Although functional magnetic resonance imaging (fMRI) remains a cornerstone in the field of rsFC recordings, its interpretation is often hindered by the convoluted physiological origin of the blood-oxygen-level-dependent (BOLD) contrast affected by multiple factors. Here, we capitalize on the unique concurrent multiparametric hemodynamic recordings of a hybrid magnetic resonance optoacoustic tomography platform to comprehensively characterize rsFC in female mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!