Microbial response to salinity stress in a tropical sandy soil amended with native shrub residues or inorganic fertilizer.

J Environ Manage

UMR 210 Eco&Sols (Ecologie Fonctionnelle & Biogéochimie des Sols) INRA-IRD-SupAgro, Place Viala (Bt. 12), F-34060 Montpellier Cedex 1, France.

Published: September 2015

Soil degradation and salinization caused by inappropriate cultivation practices and high levels of saltwater intrusion are having an adverse effect on agriculture in Central Senegal. The residues of Piliostigma reticulatum, a local shrub that coexists with crops, were recently shown to increase particulate organic matter and improve soil quality and may be a promising means of alleviating the effects of salinization. This study compared the effects of inorganic fertilizer and P. reticulatum residues on microbial properties and the ability of soil to withstand salinity stress. We hypothesized that soils amended with P. reticulatum would be less affected by salinity stress than soils amended with inorganic fertilizer and control soil. Salinity stress was applied to soil from a field site that had been cultivated for 5 years under a millet/peanut crop rotation when microbial biomass, phospholipid fatty acid (PLFA) community profile, catabolic diversity, microbial activities were determined. Microbial biomass, nitrification potential and dehydrogenase activity were higher by 20%, 56% and 69% respectively in soil with the organic amendment. With salinity stress, the structure and activities of the microbial community were significantly affected. Although the biomass of actinobacteria community increased with salinity stress, there was a substantial reduction in microbial activity in all soils. The soil organically amended was, however, less affected by salinity stress than the control or inorganic fertilizer treatment. This suggests that amendment using P. reticulatum residues may improve the ability of soils to respond to saline conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2015.06.017DOI Listing

Publication Analysis

Top Keywords

salinity stress
28
inorganic fertilizer
16
soil
8
p reticulatum residues
8
soils amended
8
microbial biomass
8
microbial
7
salinity
7
stress
7
microbial response
4

Similar Publications

Unlabelled: Many species of proteobacterial methane-consuming bacteria (methanotrophs) form a hauberk-like envelope represented by a surface (S-) layer protein (SLP) matrix. While several proteins were predicted to be associated with the cell surface, the composition and function of the hauberk matrix remained elusive. Here, we report the identification of the genes encoding the hauberk-forming proteins in two gamma-proteobacterial (Type I) methanotrophs, 5GB1 (EQU24_15540) and 20Z (MEALZ_0971 and MEALZ_0972).

View Article and Find Full Text PDF

Microbial Biotic Associations Dominated Adaptability Differences of Dioecious Poplar Under Salt Stress.

Plant Cell Environ

January 2025

Key Laboratory of the State Forestry and Grassland Administration for the Cultivation of Forests in the Lower Reaches of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, China.

How different stress responses by male and female plants are influenced by interactions with rhizosphere microbes remains unclear. In this study, we employed poplar as a dioecious model plant and quantified biotic associations between microorganisms to explore the relationship between microbial associations and plant adaptation. We propose a health index (HI) to comprehensively characterize the physiological characteristics and adaptive capacity of plants under stress.

View Article and Find Full Text PDF

The bioremediation method is considered an economical and environmentally friendly strategy for the remediation of oil-contaminated soils. However, some oil field areas have extreme environmental conditions that make it difficult to establish microbes for bioreme-diation. In this study, bacteria were isolated from oil-contaminated soils of the Dehloran oil fields, which have very harsh soil and weather conditions.

View Article and Find Full Text PDF

D1-104/3 and C31-106/3 differentially modulate the antioxidative response of duckweed ( L.) to salt stress.

Front Microbiol

December 2024

Department of Plant Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia.

Introduction: The common duckweed () is a model organism for investigation of plant physiology, especially stress-related responses. Its two physiological characteristics are of special interest: (1) salt-stressed duckweeds may accumulate starch, a precursor for biofuel; (2) duckweeds are associated with various beneficial (plant-growth promoting, PGP) bacterial strains. In this paper, we analyzed the role of two bacterial strains: D1-104/3 and C31-106/3 in regulation of duckweed's growth and antioxidative responses to salt (10 and 100 mM NaCl) and hypothesized that they alleviate salt-induced oxidative stress.

View Article and Find Full Text PDF

Thiourea induces antioxidant mechanisms of salt tolerance in flax plants.

Physiol Mol Biol Plants

December 2024

Science and Technology Department, University College in Nairiyah, University of Hafr Al Batin (UHB), 31991 Nairiyah, Saudi Arabia.

Salinity is one of the abiotic stress factors that affect plant physiology and cause various plant disorders. Thiourea, which consists of amino, thiol, and imino groups, is an antioxidant and growth regulator. The objective was to determine the antioxidant role of thiourea (0, 3, 6 mM) in attenuating the effects of salinity (0 mM, 50 mM, 100 mM NaCl) on growth, yield, and some biochemical compositions of flax ( L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!