Interface segregation behavior in thermal aged austenitic precipitation strengthened stainless steel.

Ultramicroscopy

Technical Department, Jiuli Hi-Tech Metals Co., Ltd., Huzhou 313008, PR China.

Published: December 2015

The segregation of various elements at grain boundaries, precipitate/matrix interfaces were analyzed using atom probe tomography in an austenitic precipitation strengthened stainless steel aged at 750 °C for different time. Segregation of P, B and C at all types of interfaces in all the specimens were observed. However, Si segregated at all types of interfaces only in the specimen aged for 16 h. Enrichment of Ti at grain boundaries was evident in the specimen aged for 16 h, while Ti did not segregate at other interfaces. Mo varied considerably among interface types, e.g. from segregated at grain boundaries in the specimens after all the aging time to never segregate at γ'/γ phase interfaces. Cr co-segregated with C at grain boundaries, although carbides still did not nucleate at grain boundaries yet. Despite segregation tendency variations in different interface types, the segregation tendency evolution variation of different elements depending aging time were analyzed among all types of interfaces. Based on the experimental results, the enrichment factors, Gibbs interface excess and segregation free energies of segregated elements were calculated and discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultramic.2015.06.001DOI Listing

Publication Analysis

Top Keywords

grain boundaries
20
types interfaces
12
austenitic precipitation
8
precipitation strengthened
8
strengthened stainless
8
stainless steel
8
specimen aged
8
interface types
8
aging time
8
segregation tendency
8

Similar Publications

The Influence of the Strain Rate on Texture Formation During the Plane Strain Compression of AZ80 Magnesium Alloy.

Materials (Basel)

December 2024

Department of Marine Design Convergence Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea.

Controlling microstructure and texture development is a key approach to improving the formability of magnesium alloys. In this study, the effects of the strain rate and initial texture on the texture evolution of magnesium alloys during high-temperature processing are investigated. The plane strain compression of three types of AZ80 magnesium alloys with different initial textures was assessed at 723 K and a train rate of 0.

View Article and Find Full Text PDF

In this study, we synthesized perovskite BaSrSnO ceramics with a unique thorn-like microstructure using the solid-state reaction method. The structural and complex dielectric properties were investigated in detail. X-ray diffraction was employed to characterize the phase purity, while X-ray photoelectron spectroscopy was used to analyze the chemical state of the components.

View Article and Find Full Text PDF

Pure copper (Cu) is widely used across numerous industries owing to its exceptional thermal and electrical conductivity. Additive manufacturing has facilitated the rapid and cost-effective prototyping of Cu components. Laser powder bed fusion (LPBF) has demonstrated the capability to produce intricate Cu components.

View Article and Find Full Text PDF

The ultraprecision machining of diamond presents certain difficulties due to its extreme hardness. However, the graphitization modification can enhance its machinability. This work presents an investigation into the characteristics of the graphitization modification in polycrystalline diamond induced by a nanosecond pulsed laser.

View Article and Find Full Text PDF

In this paper, in order to investigate the harmonious relationship between the compression deformation behavior of metastable β titanium alloy and the microstructure evolution, the β solution-treated Ti-10V-2Fe-3Al (Ti-1023) alloy was compressed at room temperature and its deformation behavior was analyzed. Optical microscopy (OM) and field emission electron microscopy (FESEM) were used to study the microstructure evolution of alloys at different strain rates. The results show that the stress-induced martensite transformation (SIMT) is more easily activated by low strain rate compression deformation, which is conducive to improving its comprehensive mechanical properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!