Do Platelets Inhibit the Effect of Aspirin on Cancer Cells?

Cancer Microenviron

Department of Experimental Medicine & Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India, 160012.

Published: August 2015

Both platelets and cancer cells display an intimate reciprocal crosstalk resulting in alteration of each other's properties. Although many past studies have tried to demonstrate effect of platelets on tumour cells, exact role of platelets in carcinogenesis is still not clear. In the above study, we explored the effect of different concentrations of platelet rich plasma (PRP) on viability, proliferation and adhesion of HeLa cells in culture conditions. The above parameters were found to be slightly increased on incubation with lower two concentrations of PRP (4.4 × 10(5) & 1 × 10(6) platelets/μl) while a reverse effect was seen at high PRP concentration (2 × 10(6) lac platelets/μl) especially at 24 h. To further validate that the above effects were due to platelets we repeated the experiments in the presence of antiplatelet drug aspirin (20 mM). On treatment with aspirin alone, the cell viability, proliferation and adhesion were seen to be decreased indicating cytotoxicity of aspirin towards HeLa cells. However, all of the above parameters were found to increase on addition of all PRP concentrations at 24 h. Overall, variations in the number of platelets produced different effects on the cancer cells. Use of aspirin reduced the viability of the cancer cells, but this effect was seen to be partially reversed by all the concentrations of PRP used.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4542823PMC
http://dx.doi.org/10.1007/s12307-015-0169-7DOI Listing

Publication Analysis

Top Keywords

cancer cells
12
viability proliferation
8
proliferation adhesion
8
hela cells
8
concentrations prp
8
platelets
6
cells
6
aspirin
5
prp
5
platelets inhibit
4

Similar Publications

Purpose: To detect the prognostic importance of liquid-liquid phase separation (LLPS) in lung adenocarcinoma.

Methods: The gene expression files, copy number variation data, and clinical data were downloaded from The Cancer Genome Atlas cohort. LLPS-related genes were acquired from the DrLLPS website.

View Article and Find Full Text PDF

Aim: Breast cancer (BC) is the most frequently diagnosed malignancy worldwide, necessitating continued research into its molecular mechanisms. Circular RNAs (circRNAs) are increasingly recognized for their role in various cancers, including BC. This study explores the role of circRNA kinesin family member 4A (circKIF4A) in BC progression and its underlying molecular mechanisms.

View Article and Find Full Text PDF

A pan-tumor review of the role of poly(adenosine diphosphate ribose) polymerase inhibitors.

CA Cancer J Clin

January 2025

Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA.

Poly(adenosine diphosphate ribose) polymerase (PARP) inhibitors, such as olaparib, talazoparib, rucaparib, and niraparib, comprise a therapeutic class that targets PARP proteins involved in DNA repair. Cancer cells with homologous recombination repair defects, particularly BRCA alterations, display enhanced sensitivity to these agents because of synthetic lethality induced by PARP inhibitors. These agents have significantly improved survival outcomes across various malignancies, initially gaining regulatory approval in ovarian cancer and subsequently in breast, pancreatic, and prostate cancers in different indications.

View Article and Find Full Text PDF

In the last decade the important role of small non-coding RNAs such as micro RNAs (miRs) in gene regulation in healthy and disease states became more and more evident. The miR-200-family of miRs has been shown to play a critical role in many diseases such as cancer and neurodegenerative disorders and could be potentially important for diagnosis and treatment. However, the size of miRs of about ~21-23nt provide challenges for their investigation.

View Article and Find Full Text PDF

Heteronemin suppresses EGF‑induced proliferation through the PI3K/PD‑L1 signaling pathways in cholangiocarcinoma.

Oncol Rep

March 2025

Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan, R.O.C.

Epidermal growth factor (EGF) binds with its surface receptor to stimulate gene expression and cancer cell proliferation. EGF stimulates cancer cell growth via phosphoinositide 3‑kinase (PI3K) and programmed cell death ligand 1 (PD‑L1) pathways. As an integrin αvβ3 antagonist, heteronemin exhibits potent cytotoxic effects against cancer cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!