Enhanced nonsynaptic epileptiform activity in the dentate gyrus after kainate-induced status epilepticus.

Neuroscience

Laboratório de Neurociência Experimental e Computacional, Departamento de Engenharia de Biossistemas, Universidade Federal de São João del-Rei, São João del-Rei, Brazil. Electronic address:

Published: September 2015

Understanding the mechanisms that influence brain excitability and synchronization provides hope that epileptic seizures can be controlled. In this scenario, non-synaptic mechanisms have a critical role in seizure activity. The contribution of ion transporters to the regulation of seizure-like activity has not been extensively studied. Here, we examined how non-synaptic epileptiform activity (NEA) in the CA1 and dentate gyrus (DG) regions of the hippocampal formation were affected by kainic acid (KA) administration. NEA enhancement in the DG and suppression in area CA1 were associated with increased NKCC1 expression in neurons and severe neuronal loss accompanied by marked glial proliferation, respectively. Twenty-four hours after KA, the DG exhibited intense microglial activation that was associated with reduced cell density in the infra-pyramidal lamina; however, cellular density recovered 7 days after KA. Intense Ki67 immunoreactivity was observed in the subgranular proliferative zone of the DG, which indicates new neuron incorporation into the granule layer. In addition, bumetanide, a selective inhibitor of neuronal Cl(-) uptake mediated by NKCC1, was used to confirm that the NKCC1 increase effectively contributed to NEA changes in the DG. Furthermore, 7 days after KA, prominent NKCC1 staining was identified in the axon initial segments of granule cells, at the exact site where action potentials are preferentially initiated, which endowed these neurons with increased excitability. Taken together, our data suggest a key role of NKCC1 in NEA in the DG.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroscience.2015.06.057DOI Listing

Publication Analysis

Top Keywords

epileptiform activity
8
dentate gyrus
8
nkcc1
5
enhanced nonsynaptic
4
nonsynaptic epileptiform
4
activity
4
activity dentate
4
gyrus kainate-induced
4
kainate-induced status
4
status epilepticus
4

Similar Publications

Background: (absent, small, or homeotic-like 1), a histone methyltransferase, has been identified as a high-risk gene for autism spectrum disorder (ASD). We previously showed that postnatal severe deficiency in the prefrontal cortex (PFC) of male and female mice caused seizures. However, the synaptic mechanisms underlying autism-like social deficits and seizures need to be elucidated.

View Article and Find Full Text PDF

It is well known that activation of NMDA receptors can trigger long-term synaptic depression (LTD) and that a morphological correlate of this functional plasticity is spine retraction and elimination. Recent studies have led to the surprising conclusion that NMDA-induced spine shrinkage proceeds independently of ion flux and requires the initiation of protein synthesis, highlighting an unappreciated contribution of mRNA translation to non-ionotropic NMDAR signaling. Here we used NMDA-induced spine shrinkage in slices of mouse hippocampus as a readout to investigate this novel modality of synaptic transmission.

View Article and Find Full Text PDF

Background: Long QT Syndrome Type-2 (LQT2) is due to loss-of-function variants. encodes K 11.1 that forms a delayed-rectifier potassium channel in the brain and heart.

View Article and Find Full Text PDF

Temporal lobe epilepsy (TLE) is characterized by alterations of brain dynamic on a large-scale associated with altered cognitive functioning. Here, we aimed at analyzing dynamic reconfiguration of brain activity, using the neural fingerprint approach, to delineate subject-specific characteristics and their cognitive correlates in TLE. We collected 10 min of resting-state scalp-electroencephalography (EEG, 128 channels), free from epileptiform activity, from 68 TLE patients and 34 controls.

View Article and Find Full Text PDF

Contemporary studies report nonconvulsive status epilepticus (NCSE) in Creutzfeldt-Jakob disease (CJD), based on benzodiazepine (BZP)-responsive epileptiform discharges on the electroencephalogram (EEG), with the following false syllogism: (1) intravenous (IV) administration of BZPs usually suppress ictal activity in NCSE; (2) in CJD, periodic sharp wave complexes (PSWCs) are suppressed by IV BZPs; (3) therefore, these patients have NCSE. This is a simplistic and invalid conclusion, because authors of 20th-century science reports have clearly shown that IV BZPs, short-acting barbiturates, and drugs with no antiseizure effects, such as chloral hydrate and IV naloxone, suppress PSWCs, but patients fall asleep with no clinical improvement. In contrast, IV methylphenidate transiently improves both the EEG and clinical states.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!