The effects of model androgen 5α-dihydrotestosterone on mummichog (Fundulus heteroclitus) reproduction under different salinities.

Aquat Toxicol

Department of Natural Resources and the Environment, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, CT 06269, USA; Center for Environmental Science and Engineering, University of Connecticut, Storrs, CT 06269, USA. Electronic address:

Published: August 2015

Endocrine disrupting substances (EDSs) have the potential to disturb sensitive hormone pathways, particularly those involved in development and reproduction. Both fresh and estuarine water bodies receive inputs of EDSs from a variety of sources, including sewage effluent, industrial effluent and agricultural runoff. Based on current literature, freshwater species appear to respond to lower levels of EDSs than estuarine or marine species. Therefore, effects elicited by EDSs in freshwater teleosts may not be an accurate representation of how EDSs affect teleosts in estuarine and marine environments. To address this potential difference, a short-term reproductive bioassay was conducted under conditions of low and high salinity using mummichog (Fundulus heteroclitus), a euryhaline species that is native to the east coast of North America. The goals of this study were to determine the response of mummichog when exposed to an androgenic EDS and whether salinity affected the response. A model androgen, 5α-dihydrotestosterone (DHT), was selected for this experiment. Impacts on reproduction were evaluated at multiple biological levels, including physiological (sex steroid levels), organismal (gonad size and gonad morphology), and functional (egg production) endpoints. Under conditions of high salinity, egg production was significantly reduced at all exposure concentrations. Under conditions of low salinity, there were no significant differences based on DHT treatment; however, egg production in all treatment groups including the control were significantly reduced relative to the high salinity control group. Other reproductive endpoints, such as sex steroid production, showed stronger correlation to fecundity in females than males. This study demonstrates that mummichog fecundity is sensitive to androgenic endocrine disruption while also underscoring the importance of how changes in salinity, an environmental variable, can impact reproduction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aquatox.2015.05.019DOI Listing

Publication Analysis

Top Keywords

high salinity
12
egg production
12
model androgen
8
androgen 5α-dihydrotestosterone
8
mummichog fundulus
8
fundulus heteroclitus
8
estuarine marine
8
conditions low
8
sex steroid
8
salinity
6

Similar Publications

Comparative metabolomic analysis of Haematococcus pluvialis during hyperaccumulation of astaxanthin under the high salinity and nitrogen deficiency conditions.

World J Microbiol Biotechnol

January 2025

Key Laboratory of Smart Breeding (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin, 300392, P.R. China.

Revealing the differences of metabolite profiles of H. pluvialis during hyperaccumulation of astaxanthin under the high salinity and nitrogen deficiency conditions was the key issues of the present study. To investigate the optimum NaCl and NaNO concentration and the corresponding metabolic characteristic related to the astaxanthin accumulation in H.

View Article and Find Full Text PDF

Recent Advances of Carbon Dots: Synthesis, Plants Applications, Prospects, and Challenges.

ACS Appl Bio Mater

January 2025

Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.

Nanomaterials and nanotechnology have garnered significant attention in the realm of agricultural production. Carbon dots (CDs), as a class of nanomaterials, play a crucial role in the field of plant growth due to their excellent properties. This review aims to summarize recent achievements on CDs, focusing on their methods of preparation and applications in plants systems.

View Article and Find Full Text PDF

Mitigating matrix effects in oil and gas wastewater analysis: LC-MS/MS method for ethanolamines.

Environ Sci Process Impacts

January 2025

Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Parsons Laboratory, 15 Vassar Street, Cambridge, Massachusetts 02139, USA.

The high salinity and organic content in oil and gas wastewaters can cause ion suppression during liquid chromatography mass spectrometry (LC/MS) analysis, diminishing the sensitivity and accuracy of measurements in available methods. This suppression is severe for low molecular weight organic compounds such as ethanolamines (, monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), -methyldiethanolamine (MDEA), and ,-ethyldiethanolamine (EDEA)). Here, we deployed solid phase extraction (SPE), mixed-mode LC, triple quadrupole MS with positive electrospray ionization (ESI), and a suite of stable isotope standards (, one per target compound) to correct for ion suppression by salts and organic matter, SPE losses, and instrument variability.

View Article and Find Full Text PDF

In surface waters, photodegradation is a major abiotic removal pathway of the neurotoxin monomethylmercury (MMHg), acting as a key control on the amounts of MMHg available for biological uptake. Different environmental factors can alter the rate of MMHg photodegradation. However, our understanding of how MMHg photodegradation pathways in complex matrixes along the land-to-ocean aquatic continuum respond to changes in salinity, dissolved organic carbon (DOC) concentration and dissolved organic matter (DOM) composition is incomplete.

View Article and Find Full Text PDF

Molecular Mechanisms of Humic Acid in Inhibiting Silica Scaling during Membrane Distillation.

Environ Sci Technol

January 2025

Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China.

Membrane distillation (MD) efficiently desalinizes and treats high-salinity water as well as addresses the challenges in handling concentrated brines and wastewater. However, silica scaling impeded the effectiveness of MD for treating hypersaline water and wastewater. Herein, the effects of humic acid (HA) on silica scaling behavior during MD are systematically investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!