Electron self-exchange in hemoglobins revealed by deutero-hemin substitution.

J Inorg Biochem

The Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, United States. Electronic address:

Published: September 2015

Hemoglobins (phytoglobins) from rice plants (nsHb1) and from the cyanobacterium Synechocystis (PCC 6803) (SynHb) can reduce hydroxylamine with two electrons to form ammonium. The reaction requires intermolecular electron transfer between protein molecules, and rapid electron self-exchange might play a role in distinguishing these hemoglobins from others with slower reaction rates, such as myoglobin. A relatively rapid electron self-exchange rate constant has been measured for SynHb by NMR, but the rate constant for myoglobin is equivocal and a value for nsHb1 has not yet been measured. Here we report electron self-exchange rate constants for nsHb1 and Mb as a test of their role in hydroxylamine reduction. These proteins are not suitable for analysis by NMR ZZ exchange, so a method was developed that uses cross-reactions between each hemoglobin and its deutero-hemin substituted counterpart. The resulting electron transfer is between identical proteins with low driving forces and thus closely approximates true electron self-exchange. The reactions can be monitored spectrally due to the distinct spectra of the prosthetic groups, and from this electron self-exchange rate constants of 880 (SynHb), 2900 (nsHb1), and 0.05M(-1) s(-1) (Mb) have been measured for each hemoglobin. Calculations of cross-reactions using these values accurately predict hydroxylamine reduction rates for each protein, suggesting that electron self-exchange plays an important role in the reaction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jinorgbio.2015.06.014DOI Listing

Publication Analysis

Top Keywords

electron self-exchange
28
self-exchange rate
12
electron
9
electron transfer
8
rapid electron
8
rate constant
8
rate constants
8
hydroxylamine reduction
8
self-exchange
6
self-exchange hemoglobins
4

Similar Publications

Copper complexes of tripodal ligands have been used as model systems for electron transfer proteins for decades, displaying a broad range of electron self-exchange rates. We herein report a group of six tripodal tetradentate triarylamine ligands which display a varying number of guanidine and 2-methylquinolinyl moieties. Their corresponding Cu(I) complexes have been (re)synthesized and studied with regard to their electron transfer properties.

View Article and Find Full Text PDF

Redox hopping is the primary method of electron transport through redox-active metal-organic frameworks (MOFs). While redox hopping adequately supports the electrocatalytic application of MOFs, the fundamental understandings guiding the design of redox hopping MOFs remain nascent. In this study, we probe the rate of electron and hole transport through a singular MOF scaffold to determine whether the properties of the MOF promote the transport of one carrier over the other.

View Article and Find Full Text PDF

The Molecular Nature of Redox-Conductive Metal-Organic Frameworks.

Acc Chem Res

October 2024

Wallenberg Initiative Materials Science for Sustainability, Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden.

ConspectusRedox-conductive metal-organic frameworks (RC-MOFs) are a class of porous materials that exhibit electrical conductivity through a chain of self-exchange reactions between molecularly defined, neighboring redox-active units of differing oxidation states. To maintain electroneutrality, this electron hopping transport is coupled to the translocation of charge balancing counterions. Owing to the molecular nature of the redox active components, RC-MOFs have received increasing attention for potential applications in energy storage, electrocatalysis, reconfigurable electronics, etc.

View Article and Find Full Text PDF

In a previous study, we showed that the properties and the ability as an entatic state model of copper guanidine quinoline complexes are significantly influenced by a methyl or methyl ester substituent in the 2-position. To prove the importance of the 2-position of the substituent, two novel guanidine quinoline ligands with a methyl or methyl ester substituent in the 4-position and the corresponding copper complexes were synthesized and characterized in this study. The influence of the substituent position on the copper complexes was investigated with various experimental and theoretical methods.

View Article and Find Full Text PDF

Soluble redox-active polymers (RAPs) enable size-exclusion nonaqueous redox flow batteries (NaRFBs) which promise high energy density. Pendants along the RAPs not only store charge but also engage in electron transfer to varying extents based on their designs. Here, we explore these phenomena in Metal-containing Redox Active Polymers (M-RAPs, M = Ru, Fe, Co).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!