Background And Aims: The 2-Cys peroxiredoxin (Prx) A protein of Arabidopsis thaliana performs the dual functions of a peroxidase and a molecular chaperone depending on its conformation and the metabolic conditions. However, the precise mechanism responsible for the functional switching of 2-Cys Prx A is poorly known. This study examines various serine-to-cysteine substitutions on α-helix regions of 2-Cys Prx A in Arabidopsis mutants and the effects they have on the dual function of the protein.

Methods: Various mutants of 2-Cys Prx A were generated by replacing serine (Ser) with cysteine (Cys) at different locations by site-directed mutagenesis. The mutants were then over-expressed in Escherichia coli. The purified protein was further analysed by size exclusion chromatography, polyacrylamide gel electrophoresis, circular dichroism spectroscopy and transmission electron microscopy (TEM) and image analysis. Peroxidase activity, molecular chaperone activity and hydrophobicity of the proteins were also determined. Molecular modelling analysis was performed in order to demonstrate the relationship between mutation positions and switching of 2-Cys Prx A activity.

Key Results: Replacement of Ser(150) with Cys(150) led to a marked increase in holdase chaperone and peroxidase activities of 2-Cys Prx A, which was associated with a change in the structure of an important domain of the protein. Molecular modelling demonstrated the relationship between mutation positions and the switching of 2-Cys Prx A activity. Examination of the α2 helix, dimer-dimer interface and C-term loop indicated that the peroxidase function is associated with a fully folded α2 helix and easy formation of a stable reduced decamer, while a more flexible C-term loop makes the chaperone function less likely.

Conclusions: Substitution of Cys for Ser at amino acid location 150 of the α-helix of 2-Cys Prx A regulates/enhances the dual enzymatic functions of the 2-Cys Prx A protein. If confirmed in planta, this leads to the potential for it to be used to maximize the functional utility of 2-Cys Prx A protein for improved metabolic functions and stress resistance in plants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4577999PMC
http://dx.doi.org/10.1093/aob/mcv094DOI Listing

Publication Analysis

Top Keywords

2-cys prx
40
2-cys
12
prx protein
12
switching 2-cys
12
prx
11
site-directed mutagenesis
8
2-cys peroxiredoxin
8
prx arabidopsis
8
arabidopsis thaliana
8
molecular chaperone
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!