An anomalous left coronary artery from the pulmonary artery (ALCAPA) is rarely associated with persistent ductus arteriosus (PDA). A large PDA can maintain perfusion in the left coronary artery, delaying presentation. Assessing the origin of the coronary arteries before PDA ligation is difficult, often being performed in very small or even preterm babies. We present the case of a 5-month-old infant with echocardiographic features of mitral regurgitation and subendocardial ischemia who experienced ischemia and cardiac arrest after PDA ligation. Transesophageal echocardiography demonstrated ALCAPA, and left coronary translocation was performed. The infant was discharged after 10 days.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.athoracsur.2015.04.015DOI Listing

Publication Analysis

Top Keywords

left coronary
16
anomalous left
8
pulmonary artery
8
persistent ductus
8
ductus arteriosus
8
coronary artery
8
pda ligation
8
coronary
5
coronary pulmonary
4
artery
4

Similar Publications

Novel Therapies for Right Ventricular Failure.

Curr Cardiol Rep

January 2025

Pediatric Advanced Heart Failure and Heart Transplant Program, University of Mississippi Medical Center, 2500 N State Street, Jackson, MS, USA.

Purpose Of Review: Traditionally viewed as a passive player in circulation, the right ventricle (RV) has become a pivotal force in hemodynamics. RV failure (RVF) is a recognized complication of primary cardiac and pulmonary vascular disorders and is associated with a poor prognosis. Unlike treatments for left ventricular failure (LVF), strategies such as adrenoceptor signaling inhibition and renin-angiotensin system modulation have shown limited success in RVF.

View Article and Find Full Text PDF

The acute response to therapeutic afterload reduction differs between heart failure with preserved (HFpEF) versus reduced ejection fraction (HFrEF), with larger left ventricular (LV) stroke work augmentation in HFrEF compared to HFpEF. This may (partially) explain the neutral effect of HFrEF-medication in HFpEF. It is unclear whether such differences in hemodynamic response persist and/or differentially trigger reverse remodeling in case of long-term afterload reduction.

View Article and Find Full Text PDF

The maximal oxygen uptake (V̇O) is typically higher in endurance-trained adolescents than in non-endurance-trained peers. However, the specific mechanisms contributing to this remain unclear, as well as the impact of training during this developmental stage. This study aims to compare V̇O and cardiovascular functions between 12-year-old endurance athletes and non-endurance-trained over a 14-month period.

View Article and Find Full Text PDF

Objective: To explore the prognostic significance of Sestrin-2 and Galectin-3 levels in atrial fibrillation complicated by left atrial remodelling, aiming to offer novel insights for prevention, treatment, and follow-up strategies.

Study Design: Analytical study. Place and Duration of the Study: Department of Cardiology, Second People's Hospital of Anhui Province, Hefei, China, from January 2021 to December 2023.

View Article and Find Full Text PDF

Portable devices for periodic monitoring of bioelectrical impedance along meridian pathways in healthy individuals.

Biomed Eng Online

January 2025

Department of Cardiovascular Surgery, Division of Cardiovascular Medicine, The Sixth Medical Center, Chinese PLA General Hospital, No.6 of Fucheng Road, Haidian District, Beijing, 100853, China.

Objective: This study aims to investigate the monthly variation patterns of bioelectrical impedance (BEI) along 24 meridian pathways in healthy individuals.

Methods: A cohort of 684 healthy middle-aged participants from North China was enrolled between July 1, 2017, and September 5, 2020. BEI measurements were consistently recorded along the 24 meridian pathways over the study period.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!