Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The α-Gal (Galα1,3-Galβ1-4GlcNAc-R) epitope, the major xenoantigen, is the first barrier in a porcine-to-man tissue and organ xenotransplantation. The elimination or reduction of the α-Gal epitopes is therefore an important step for a successful xenotransplantation. The present study is to evaluate the α-Gal elimination in the porcine skin with α-galactosidase treatment, and to assess two methods (immunohistochemistry and inhibition ELISA) that may be used in quality control for quantifying the extent of the α-Gal elimination. Enzymatic cleavage in a single-step process is extremely efficient and affordable at eliminating the α-Gal epitope even in a tissue as dense as the porcine dermis. The cost of enzymatic cleavage is found to be less than US$7 for a 10 × 10 cm piece of porcine skin (0.5 mm thick) or about US$140 for 100 g of 3-dimensional soft tissues. After enzymatic cleavage, the α-Gal-positive immunostaining was essentially undetectable in enzyme-treated porcine skin. The inhibition rate constant of the monoclonal anti-Gal antibody M86 binding to α-Gal-bovine serum albumin in ELISA was reduced from 15.0 ± 4.3 (n = 10) to 6.1 ± 2.6 (n = 7) after enzyme treatment, in comparison to 4.4 ± 1.8 (n = 9) background inhibition of decellularized human skin (the ultimate negative control), which demonstrates ∼ 84% elimination of α-Gal epitopes in treated porcine skin. To examine the suitability of two detection methods for the routine quality control application, comparative studies were made with control and enzyme-treated porcine skin, porcine skin from the α-Gal knockout animal, as well as decellularized human skin. The data show that the traditional immunohistochemistry and, to a less extent, the inhibition ELISA with further modifications can be used as quality control tools in the production and selection of biocompatible bioprosthetic devices. The biological evaluation of enzyme-treated porcine skin is ongoing with a small animal model and a nonhuman primate model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/ten.TEC.2015.0129 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!