Enhanced fluorescence detection of miRNA-16 on a photonic crystal.

Analyst

Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy.

Published: August 2015

We report a novel sensing method for fluorescence-labelled microRNAs (miRNAs) spotted on an all-dielectric photonic structure. Such a photonic structure provides an enhanced excitation and a directional beaming of the emitted fluorescence, resulting in a significant improvement of the overall signal collected. As a result, the Limit of Detection (LoD) is demonstrated to decrease by a factor of about 50. A compact read-out system allows a wide-field imaging-based detection, with little or no optical alignment issues, which makes this approach particularly interesting for further development for example in microarray-type bioassays.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5an00889aDOI Listing

Publication Analysis

Top Keywords

photonic structure
8
enhanced fluorescence
4
fluorescence detection
4
detection mirna-16
4
mirna-16 photonic
4
photonic crystal
4
crystal report
4
report novel
4
novel sensing
4
sensing method
4

Similar Publications

Purpose: Computed tomography (CT) is crucial in oncologic imaging for precise diagnosis and staging. Beam-hardening artifacts from contrast media in the superior vena cava can degrade image quality and obscure adjacent structures, complicating lymph node assessment. This study examines the use of virtual monoenergetic reconstruction with photon-counting detector CT (photon-counting CT) to mitigate these artifacts.

View Article and Find Full Text PDF

Room temperature ferroelectricity in monolayer graphene sandwiched between hexagonal boron nitride.

Nat Commun

January 2025

Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, China.

The ferroelectricity in stacked van der Waals multilayers through interlayer sliding holds great promise for ultrathin high-density memory devices, yet mostly subject to weak polarization and cryogenic operating condition. Here, we demonstrate robust room-temperature ferroelectricity in monolayer graphene sandwiched between hexagonal boron nitride layers with a rhombohedral-like stacking (i.e.

View Article and Find Full Text PDF

Accelerating the discovery of novel crystal materials by machine learning is crucial for advancing various technologies from clean energy to information processing. The machine-learning models for prediction of materials properties require embedding atomic information, while traditional methods have limited effectiveness in enhancing prediction accuracy. Here, we proposed an atomic embedding strategy called universal atomic embeddings (UAEs) for their broad applicability as atomic fingerprints, and generated the UAE tensors based on the proposed CrystalTransformer model.

View Article and Find Full Text PDF

All-perovskite tandem solar cells (APTSCs) offer the potential to surpass the Shockley-Queisser limit of single-junction solar cells at low cost. However, high-performance APTSCs contain unstable methylammonium (MA) cation in the tin-lead (Sn-Pb) narrow bandgap subcells. Currently, MA-free Sn-Pb perovskite solar cells (PSCs) show lower performance compared with their MA-containing counterparts.

View Article and Find Full Text PDF

Observation of ultraviolet photothermoelectric bipolar impulse in gallium-based heterostructure nanowires.

Nat Commun

January 2025

Key Laboratory of Advanced Photonic and Electronic Materials, Key Laboratory of Optoelectronic Devices and Systems with Extreme Performances of MOE and School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, China.

The incorporation of thermal dynamics alongside conventional optoelectronic principles holds immense promise for advancing technology. Here, we introduce a GaON/GaN heterostructure-nanowire ultraviolet electrochemical cell of observing a photothermoelectric bipolar impulse characteristic. By leveraging the distinct thermoelectric properties of GaON/GaN, rapid generation of hot carriers establishes bidirectional instantaneous gradients in concentration and temperature within the nanoscale heterostructure via light on/off modulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!