Noodles are staple cereal food in many countries; however addition of encapsulated probiotics into noodle formulation, its effect on noodle quality and cell viability has not yet been reported. The aim of this study was to prepare microencapsulated Lactobacillus plantarum (MTCC 5422) by freeze drying with wall material combinations such as fructooligosaccharide (FOS), FOS + whey protein isolate (WPI), and FOS + denatured whey protein isolate (DWPI) to evaluate best wall system. Results showed that FOS + DWPI wall system provided better protection to cells after drying, during storage (60 days, 4 °C) and in simulated acidic and bile conditions. Further, FOS + DWPI encapsulates were incorporated into noodle formulation and evaluated the noodle quality and probiotic cell viability of cooked noodle obtained from two different production methods: (i) fresh and (ii) dried (room temperature dried - RTD, 28 °C and high temperature dried - HTD, 55 °C). The quality characteristics (cooking time, solid loss, texture, colour and sensory profiles) of FOS + DWPI encapsulates incorporated cooked noodles (both fresh and dried) were found to be acceptable. On evaluation of encapsulated probiotic bacteriaL. plantarum cell viability, 93.63 % and 62.42 % cell survival was obtained in fresh noodles before and after cooking respectively. However, 80.29 % (RTD) and 64.74 % (HTD) of encapsulated cells were viable in dried noodles, after cooking there was complete survival loss. This study suggested that fresh noodle was found to be a suitable carrier system to deliver viable cells. This is first report on influence of probiotic microcapsules in noodle processing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4486549PMC
http://dx.doi.org/10.1007/s13197-014-1506-4DOI Listing

Publication Analysis

Top Keywords

noodle quality
12
cell viability
12
lactobacillus plantarum
8
plantarum mtcc
8
mtcc 5422
8
whey protein
8
noodle
8
noodle formulation
8
protein isolate
8
wall system
8

Similar Publications

Quality Characteristics and In Vitro Digestibility of Starch Gel in White Noodles Prepared with Short-Chain Glucan Aggregates (SCGA).

Gels

December 2024

Department of Food Science and Biotechnology, Institute of Life Science and Resources, Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea.

Short-chain glucan aggregates (SCGA), a type of resistant starch (RS) Ⅲ, is produced by debranching amylopectin with pullulanase and inducing self-assembly. Despite its low digestibility and high RS content, SCGA has not been applied to real food systems, especially noodles. The objective of this study was to determine the feasibility of low-digestible noodles using SCGA and to evaluate their quality characteristics and in vitro digestibility of starch gel.

View Article and Find Full Text PDF

Background: Canna edulis is a high-quality resistant starch raw material, especially for making flour products. This study aimed to investigate the effect of Canna edulis starch (CES) on the properties of flour, rheology of dough and quality of semi-dry noodles. The CES replaced part of the wheat flour in the semi-dry noodle formula.

View Article and Find Full Text PDF

Heat-stable single-helical structures formed during the extrusion process play a key role in the cooking and texture qualities of rice noodles.

Int J Biol Macromol

January 2025

State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China; International Institute of Food Innovation Co, Ltd, Nanchang University, Nanchang 330200, China. Electronic address:

Extrusion is a critical process in rice noodle production. However, the underlying mechanism by which it influences noodle quality remains inadequately understood. In this study, rice noodles were processed at extrusion temperatures ranging from 100 °C to 140 °C and characterized in terms of molecular structure, short- and long-range order, microstructure, cooking loss, and texture properties.

View Article and Find Full Text PDF

Noodles are usually rich in carbohydrates but lack essential nutrients such as protein, fiber, vitamins, and minerals, potentially causing metabolic problems if consumed in the long term. This review explores strategies to improve the quality of noodles through substitution and fortification. Substitution is replacing the main ingredient with a more nutrient-dense alternative, such as sweet potato starch, which has been shown to improve the nutritional content of noodles, such as fiber and beta carotene.

View Article and Find Full Text PDF

Quality improvements of reconstituted noodles by pre-hydrating gluten: Insights at different levels.

Food Chem

January 2025

College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; College of Life Science, Sichuan Normal University, Chengdu 610101, PR China. Electronic address:

Reconstituted noodles containing multi-grain are superior to plain noodles in terms of health benefits, but their lower gluten levels cause deterioration in cooking performance and textural quality. To this end, this study investigated the efficacy of gluten pre-hydration in a model dough. The results indicated that, with the increase in the ratio of pre-hydrated gluten, the final hydration level of gluten in reconstituted noodles, the proportion of ordered secondary structures of gluten, and the intensities of molecular interactions continuously increased, resulting in a more compact gluten network.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!