It is believed that the tribal people, who constitute 8.6 per cent of the total population (2011 census of India), are the original inhabitants of India. Glucose-6-phosphate-dehydrogenase (G6PD) deficiency is an X-linked genetic defect, affecting around 400 million people worldwide and is characterized by considerable biochemical and molecular heterogeneity. Deficiency of this enzyme is highly polymorphic in those areas where malaria is/has been endemic. G6PD deficiency was reported from India more than 50 years ago. t0 he prevalence varies from 2.3 to 27.0 per cent with an overall prevalence of 7.7 per cent in different tribal groups. Since the tribal populations live in remote areas where malaria is/has been endemic, irrational use of antimalarial drugs could result in an increased number of cases with drug induced haemolysis. Therefore, before giving antimalarial therapy, routine screening for G6PD deficiency should be undertaken in those tribal communities where its prevalence is high.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4510748 | PMC |
http://dx.doi.org/10.4103/0971-5916.159499 | DOI Listing |
Clin Infect Dis
January 2025
Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil.
Background: Daily primaquine-induced hemolysis is a common cause of complications during Plasmodium vivax malaria treatment in individuals with glucose 6-phosphate dehydrogenase deficiency (G6PDd). Alternative regimens balancing safety and efficacy are needed.
Methods: G6PDd participants with P.
Cell Rep
January 2025
Department of Molecular and Cellular Biology, The University of Guelph, Guelph ON, Canada; Department of Clinical Neuroscience, University of Calgary, Calgary, AB, Canada. Electronic address:
Loss of dopaminergic neurons in Parkinson's disease (PD) is preceded by loss of synaptic dopamine (DA) and accumulation of proteinaceous aggregates. Linking these deficits is critical to restoring DA signaling in PD. Using murine and human pluripotent stem cell (hPSC) models of PD coupled with human postmortem tissue, we show that accumulation of α-syn micro-aggregates impairs metabolic flux through the pentose phosphate pathway (PPP).
View Article and Find Full Text PDFInt J Neonatal Screen
December 2024
Laboratory of Genomic, Epigenetics, Precision and Predictive Medicine, School of Medicine, Mohammed VI University of Sciences and Health, Casablanca 82403, Morocco.
Unlabelled: Newborn screening (NBS) represents an important public health measure for the early detection of specified disorders; such screening can prevent disability and death, not only from metabolic disorders but also from endocrine, hematologic, immune, and cardiac disorders. Screening for critical congenital conditions affecting newborns' health is a great challenge, especially in developing countries such as Morocco, where NBS program infrastructure is lacking. In addition, the consanguinity rate is high in Morocco.
View Article and Find Full Text PDFFront Pharmacol
December 2024
Department of Medical Biochemistry, School of Medicine, Koc University, Istanbul, Türkiye.
Aging is influenced by cellular senescence mechanisms that are associated with oxidative stress. Oxidative stress is the imbalance between antioxidants and free radicals. This imbalance affects enzyme activities and causes mitochondrial dysfunction.
View Article and Find Full Text PDFJ Med Case Rep
December 2024
Faculty of Healthcare Sciences, Eastern University of Sri Lanka, Chenkaladi, Sri Lanka.
Background: Naphthalene is an aromatic hydrocarbon that potentially produces methemoglobinaemia but rarely causes hemolysis, especially in children with underlying glucose-6-phosphate dehydrogenase deficiency. Although ingestion of a single moth ball by an older child may not be life threatening, it can be fatal if ingested by a toddler.
Case Presentation: A 2-year-old Singhalese boy developed acute severe hemolysis and methemoglobinaemia following ingestion of a mothball.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!