Active modulation of the plasmon coupling in homodimers of polyaniline (PANI)-coated Au nanospheres is achieved by changing the proton-doping state of the PANI shell. Such a PANI-enabled modulation of the plasmon coupling in the dimers gives rise to remarkable spectral shifts, which show an exponential dependence on the interparticle gap distance. For the dimer with a 10 nm PANI shell thickness and a 0.5 nm gap distance, the shift of the stronger scattering peak in response to the active modulation reaches 231 nm. Electrodynamic simulations reveal that the shift of the dipolar bonding plasmon mode dominates the position variation of the stronger scattering peak for the dimers with different gap distances. Moreover, the quadrupolar bonding plasmon mode can be turned on and off by controlling the proton-doping state of the dimers with gap distances of less than ∼3 nm. These results are of high importance for fundamentally understanding the sensitivity of coupled plasmon resonance modes to the dielectric environment, as well as for designing active plasmonic devices with high modulation performances.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5nr02619aDOI Listing

Publication Analysis

Top Keywords

plasmon coupling
12
active modulation
8
modulation plasmon
8
proton-doping state
8
pani shell
8
gap distance
8
stronger scattering
8
scattering peak
8
bonding plasmon
8
plasmon mode
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!