Background: (V600) BRAF mutations drive approximately 50% of metastatic melanoma which can be therapeutically targeted by BRAF inhibitors (BRAFi) and, based on resistance mechanisms, the combination of BRAF and MEK inhibitors (BRAFi + MEKi). Although the combination therapy has been shown to provide superior clinical benefits, acquired resistance is still prevalent and limits the overall survival benefits. Recent work has shown that oncogenic changes can lead to alterations in tumor cell metabolism rendering cells addicted to nutrients, such as the amino acid glutamine. Here, we evaluated whether melanoma cells with acquired resistance display glutamine dependence and whether glutamine metabolism can be a potential molecular target to treat resistant cells.

Methods: Isogenic BRAFi sensitive parental (V600) BRAF mutant melanoma cell lines and resistant (derived by chronic treatment with vemurafenib) sub-lines were used to assess differences in the glutamine uptake and sensitivity to glutamine deprivation. To evaluate a broader range of resistance mechanisms, isogenic pairs where the sub-lines were resistant to BRAFi + MEKi were also studied. Since resistant cells demonstrated increased sensitivity to glutamine deficiency, we used glutaminase inhibitors BPTES [bis-2-(5 phenylacetamido-1, 2, 4-thiadiazol-2-yl) ethyl sulfide] and L-L-DON (6-Diazo-5-oxo-L-norleucine) to treat MAPK pathway inhibitor (MAPKi) resistant cell populations both in vitro and in vivo.

Results: We demonstrated that MAPKi-acquired resistant cells uptook greater amounts of glutamine and have increased sensitivity to glutamine deprivation than their MAPKi-sensitive counterparts. In addition, it was found that both BPTES and L-DON were more effective at decreasing cell survival of MAPKi-resistant sub-lines than parental cell populations in vitro. We also showed that mutant NRAS was critical for glutamine addiction in mutant NRAS driven resistance. When tested in vivo, we found that xenografts derived from resistant cells were more sensitive to BPTES or L-DON treatment than those derived from parental cells.

Conclusion: Our study is a proof-of-concept for the potential of targeting glutamine metabolism as an alternative strategy to suppress acquired MAPKi-resistance in melanoma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4490757PMC
http://dx.doi.org/10.1186/s12967-015-0581-2DOI Listing

Publication Analysis

Top Keywords

sensitivity glutamine
12
resistant cells
12
glutamine
11
melanoma cells
8
glutamine dependence
8
v600 braf
8
resistance mechanisms
8
acquired resistance
8
glutamine metabolism
8
glutamine deprivation
8

Similar Publications

DYRK1A-TGF-β signaling axis determines sensitivity to OXPHOS inhibition in hepatocellular carcinoma.

Dev Cell

January 2025

State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Electronic address:

Intervening in mitochondrial oxidative phosphorylation (OXPHOS) has emerged as a potential therapeutic strategy for certain types of cancers. Employing kinome-based CRISPR screen, we find that knockout of dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) synergizes with OXPHOS inhibitor IACS-010759 in liver cancer cells. Targeting DYRK1A combined with OXPHOS inhibitors activates TGF-β signaling, which is crucial for OXPHOS-inhibition-triggered cell death.

View Article and Find Full Text PDF

Diabetic retinopathy, a major cause of vision loss, is characterized by neurovascular changes in the retina. The lack of effective treatments to preserve vision in diabetic patients remains a significant challenge. A previous study from our laboratory demonstrated that 12-week treatment with MDL 72527, a pharmacological inhibitor of spermine oxidase (SMOX, a critical regulator of polyamine metabolism), reduced neurodegeneration in diabetic mice.

View Article and Find Full Text PDF

Glutaminase (GLS), a crucial gene regulating glutaminolysis, has received much attention as it was found to regulate tumor metabolism and copper-induced cell death. However, its biological roles and mechanisms in human cancers remain obscure. Consequently, the integrated pan-cancer analyses and biological experiments were conducted to elucidate its oncological functions.

View Article and Find Full Text PDF

Acute astrocytic and neuronal regulation of glutamatergic protein expression following blast.

Neurosci Lett

December 2024

School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA, USA; Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA; Veterans Affairs Medical Center, Salem, VA, USA. Electronic address:

Regulation of glutamate through glutamate-glutamine cycling is critical for mediating nervous system plasticity. Blast-induced traumatic brain injury (bTBI) has been linked to glutamate-dependent excitotoxicity, which may be potentiating chronic disorders such as post-traumatic epilepsy. The purpose of this study was to measure changes in the expression of astrocytic and neuronal proteins responsible for glutamatergic regulation at 4-, 12-, and 24 h in the cortex and hippocampus following single blast exposure in a rat model for bTBI.

View Article and Find Full Text PDF

Human T9 cells rely on PPAR-γ-mediated cystine uptake to prevent lipid peroxidation and bioenergetic failure.

J Invest Dermatol

December 2024

Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland. Electronic address:

T9 cells are implicated in allergic skin inflammation and depend on the transcription factor PPAR-γ for full effector function. In this study, we uncovered a role for PPAR-γ in the amino acid metabolism of human T9 cells. In in-vitro-primed T9 cells, PPAR-γ expression positively correlated with the expression of SLC7A8, which encodes LAT2, a transporter of large neutral amino acids, including cystine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!