Novel luminescent and amorphous La2O3-ZrO2:Eu(3+) (LZE) nanofibrous membranes with robust softness are fabricated for the first time via a facile electrospinning technique. By incorporating zirconium oxide, the as-prepared lanthanum oxide nanofibrous membranes can be dramatically changed from extreme fragility to robust softness. Meanwhile, the softness and luminescent performance of LZE nanofibrous membranes can be finely controlled by regulating the doping concentration of zirconium oxide and europium in lanthanum oxide nanofibers. Additionally, the crystal structure analysis using X-ray diffractometer and high resolution transmission electron microscopy measurements have confirmed the correlation between the amorphous structure and softness. Furthermore, LZE membranes show the characteristic emission of Eu(3+) corresponding to (5)D(0, 1, 2)-(7)F(0, 1, 2, 3, 4) transitions due to an efficient energy transfer from O(2-) to Eu(3+). The LZE nanofibrous membranes with the optimum doping Eu(3+) concentration of 3 mol% exhibit excellent softness and luminescent properties, which make the materials to have potential applications in fluorescent lamps and field emission displays.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5nr02173aDOI Listing

Publication Analysis

Top Keywords

nanofibrous membranes
20
robust softness
12
lze nanofibrous
12
luminescent amorphous
8
membranes robust
8
zirconium oxide
8
lanthanum oxide
8
softness luminescent
8
membranes
6
softness
6

Similar Publications

In-vitro and in-vivo studies of Tridax procumbens leaf extract incorporated bilayer polycaprolactone/polyvinyl alcohol-chitosan electrospun nanofiber for wound dressing application.

Int J Biol Macromol

January 2025

Department of Physics, Amrita School of Physical Sciences, Coimbatore, Amrita Vishwa Vidyapeetham, India; Biomaterials Laboratory, Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, India. Electronic address:

This study was an attempt to fabricate an antibacterial wound dressing, which was a bilayered polycaprolactone / polyvinyl alcohol-chitosan (PCL/PVA-CS) nanofibrous membrane. Entrapping ethanolic leaf extract of Tridax procumbens L. (PCL/PVA-CS/Tp).

View Article and Find Full Text PDF

How to Deal with Pulpitis: An Overview of New Approaches.

Dent J (Basel)

January 2025

Department of Conservative Dentistry with Endodontics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-902 Bytom, Poland.

Traditional root canal therapy (RCT) effectively removes diseased or necrotic pulp tissue and replaces it with inorganic materials. Regenerative endodontics is an alternative to conventional RCT by using biologically based approaches to restore the pulp-dentin complex. This review explores emerging techniques, including autogenic and allogenic pulp transplantation, platelet-rich fibrin, human amniotic membrane scaffolds, specialized pro-resolving mediators, nanofibrous and bioceramic scaffolds, injectable hydrogels, dentin matrix proteins, and cell-homing strategies.

View Article and Find Full Text PDF

This study explores the preparation of lubricating oleo-dispersions using electrospun nanofibrous mats made from low-sulfonate lignin (LSL) and polycaprolactone (PCL). The rheological and tribological properties of the oleo-dispersions were significantly modulated for the first time through the exploration of LSL/PCL ratio and electrospinning conditions such as applied voltage, distance between the tip and collector, flow rate, ambient humidity, and collector configuration. Adequate uniform ultrathin fibers and Small-amplitude oscillatory shear (SAOS) functions of the oleo-dispersions, with storage modulus values ranging from 10 to 10 Pa at 25 °C, were obtained with a flow rate of 0.

View Article and Find Full Text PDF

Inhibiting Friction-Induced Exogenous Adhesion via Robust Lubricative Core-Shell Nanofibers for High-Quality Tendon Repair.

Biomacromolecules

January 2025

Department of Hepatobiliary Surgery, Hebei International Joint Research Center for Digital Twin Diagnosis and Treatment of Digestive Tract Tumors, Baoding Key Laboratory of Precision Diagnosis and Treatment of Digestive Tract Tumors, Affiliated Hospital of Hebei University, Baoding 071000, China.

Friction is the trigger cause for excessive exogenous adhesion, leading to the poor self-repair of the tendon. To address this problem, we developed electrospun dual-functional nanofibers with surface robust superlubricated performance and bioactive agent delivery to regulate healing balance by reducing exogenous adhesion and promoting endogenous healing. Coaxial electrospinning and our previous developed in situ robust nanocoating growth techniques were employed to create the lubricative/repairable core-shell structured nanofibrous membrane (L/R-NM).

View Article and Find Full Text PDF

In situ growth of ZIF-8 nanoparticles on pure chitosan nanofibrous membranes for efficient antimicrobial wound dressings.

Int J Biol Macromol

January 2025

Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China. Electronic address:

Bacterial infections and excessive accumulation of wound exudates remain the main obstacles and clinical challenges to the healing of chronic cutaneous wounds. Conventional dressings are commonly used medical materials for acute wound care, but they do not possess the bacterial infection resistance required for chronic wound treatment. Herein, we prepared pure chitosan nanofibrous membranes (C) by electrospinning with poly(ethylene oxide) (PEO) as a sacrificial additive and then loaded with zinc-based metal-organic framework (MOF) as a novel antimicrobial wound dressing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!