An assumption nearly all researchers in cognitive neuroscience tacitly adhere to is that of space-time separability. Historically, it forms the basis of Donders' difference method, and to date, it underwrites all difference imaging and trial-averaging of cortical activity, including the customary techniques for analyzing fMRI and EEG/MEG data. We describe the assumption and how it licenses common methods in cognitive neuroscience; in particular, we show how it plays out in signal differencing and averaging, and how it misleads us into seeing the brain as a set of static activity sources. In fact, rather than being static, the domains of cortical activity change from moment to moment: Recent research has suggested the importance of traveling waves of activation in the cortex. Traveling waves have been described at a range of different spatial scales in the cortex; they explain a large proportion of the variance in phase measurements of EEG, MEG and ECoG, and are important for understanding cortical function. Critically, traveling waves are not space-time separable. Their prominence suggests that the correct frame of reference for analyzing cortical activity is the dynamical trajectory of the system, rather than the time and space coordinates of measurements. We illustrate what the failure of space-time separability implies for cortical activation, and what consequences this should have for cognitive neuroscience.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4646933PMC
http://dx.doi.org/10.1007/s10339-015-0662-4DOI Listing

Publication Analysis

Top Keywords

traveling waves
16
cognitive neuroscience
16
cortical activity
12
space-time separability
8
cortical
6
donders dead
4
dead cortical
4
traveling
4
cortical traveling
4
waves
4

Similar Publications

Neuronal traveling waves form preferred pathways using synaptic plasticity.

J Comput Neurosci

December 2024

Department of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, 19104, PA, USA.

Traveling waves of neuronal spiking activity are commonly observed across the brain, but their intrinsic function is still a matter of investigation. Experiments suggest that they may be valuable in the consolidation of memory or learning, indicating that consideration of traveling waves in the presence of plasticity might be important. A possible outcome of this consideration is that the synaptic pathways, necessary for the propagation of these waves, will be modified by the waves themselves.

View Article and Find Full Text PDF

Traveling wave chemotaxis of neutrophil-like HL-60 cells.

Mol Biol Cell

December 2024

Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan.

The question of how changes in chemoattractant concentration translate into the chemotactic response of immune cells serves as a paradigm for the quantitative understanding of how cells perceive and process temporal and spatial information. Here, using a microfluidic approach, we analyzed the migration of neutrophil-like HL-60 cells to a traveling wave of the chemoattractants fMLP and leukotriene B4 (LTB4). We found that under a pulsatile wave that travels at a speed of 95 and 170 µm/min, cells move forward in the front of the wave but slow down and randomly orient at the back due to temporal decrease in the attractant concentration.

View Article and Find Full Text PDF

An integrated multi-source dataset of elasmobranchs in the Red Sea following the Red Sea Decade Expedition.

Sci Data

December 2024

Marine Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.

Red Sea elasmobranch populations are facing alarming declines. Effective conservation efforts require management strategies informed by extensive datasets and by developing an understanding of distribution patterns within the basin, which is currently lacking. This study introduces CERSE (Central and Eastern Red Sea Elasmobranchs), a comprehensive compilation of elasmobranch observations in the central and eastern Red Sea basin following the route of the Red Sea Decade Expedition.

View Article and Find Full Text PDF

The auditory midbrain mediates tactile vibration sensing.

Cell

December 2024

Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA. Electronic address:

Vibrations are ubiquitous in nature, shaping behavior across the animal kingdom. For mammals, mechanical vibrations acting on the body are detected by mechanoreceptors of the skin and deep tissues and processed by the somatosensory system, while sound waves traveling through air are captured by the cochlea and encoded in the auditory system. Here, we report that mechanical vibrations detected by the body's Pacinian corpuscle neurons, which are distinguished by their ability to entrain to high-frequency (40-1,000 Hz) environmental vibrations, are prominently encoded by neurons in the lateral cortex of the inferior colliculus (LCIC) of the midbrain.

View Article and Find Full Text PDF

The goal of this article is to identify and understand the fundamental role of spatial symmetries in the emergence of undulatory swimming using an anguilliform robot. Here, the local torque at the joints of the robot is controlled by a chain of oscillators forming a central pattern generator (CPG). By implementing a symmetric CPG with respect to the transverse plane, motor activation waves are inhibited, preventing the emergence of undulatory swimming and resulting in an oscillatory gait.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!