Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The target ligand association data is a rich source of information which is not exploited enough for drug design efforts in virtual screening. A java based open-source toolkit for Protein Ligand Network Extraction (J-ProLiNE) focused on protein-ligand complex analysis with several features integrated in a distributed computing network has been developed. Sequence alignment and similarity search components have been automated to yield local, global alignment scores along with similarity and distance scores. 10000 proteins with co-crystallized ligands from pdb and MOAD databases were extracted and analyzed for revealing relationships between targets, ligands and scaffolds. Through this analysis, we could generate a protein ligand network to identify the promiscuous and selective scaffolds for multiple classes of proteins targets. Using J-ProLiNE we created a 507 x 507 matrix of protein targets and native ligands belonging to six enzyme classes and analyzed the results to elucidate the protein-protein, protein-ligand and ligand-ligand interactions. In yet another application of the J-ProLiNE software, we were able to process kinase related information stored in US patents to construct disease-gene-ligand-scaffold networks. It is hoped that the studies presented here will enable target ligand knowledge based virtual screening for inhibitor design.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1386207318666150703112620 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!