A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Optimization of Culture Medium for Maximal Production of Spinosad Using an Artificial Neural Network - Genetic Algorithm Modeling. | LitMetric

Optimization of Culture Medium for Maximal Production of Spinosad Using an Artificial Neural Network - Genetic Algorithm Modeling.

J Mol Microbiol Biotechnol

Academy of State Administration of Grain PR China, Beijing, PR China.

Published: June 2016

Background: Spinosyns, products of secondary metabolic pathway of Saccharopolyspora spinosa, show high insecticidal activity, but difficulty in enhancing the spinosad yield affects wide application. The fermentation process is a key factor in this case.

Methods: The response surface methodology (RMS) and artificial neural network (ANN) modeling were applied to optimize medium components for spinosad production using S. spinosa strain CGMCC4.1365. Experiments were performed using a rotatable central composite design, and the data obtained were used to construct an ANN model and an RSM model. Using a genetic algorithm (GA), the input space of the ANN model was optimized to obtain optimal values of medium component concentrations.

Results: The regression coefficients (R(2)) for the ANN and RSM models were 0.9866 and 0.9458, respectively, indicating that the fitness of the ANN model was higher. The maximal spinosad yield (401.26 mg/l) was obtained using ANN/GA-optimized concentrations.

Conclusion: The hybrid ANN/GA approach provides a viable alternative to the conventional RSM approach for the modeling and optimization of fermentation processes.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000381312DOI Listing

Publication Analysis

Top Keywords

ann model
12
artificial neural
8
neural network
8
genetic algorithm
8
spinosad yield
8
ann
5
optimization culture
4
culture medium
4
medium maximal
4
maximal production
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!