(E)-4-(3,5-dimethoxystyryl)phenyl acetate (Cmpd1) is a resveratrol analog that preferentially inhibits glioma, breast, and pancreatic cancer cell growth, with IC50 values of 6-19 μM. Notably, the human U251MG glioblastoma tumor line is the most sensitive, with an IC50 of 6.7 μM, compared with normal fibroblasts, which have an IC50 > 20 μM. Treatment of U251MG cells that harbor aberrantly active signal transducer and activator of transcription (Stat) 3 with Cmpd1 suppresses Stat3 tyrosine705 phosphorylation in a dose-dependent manner in parallel with the induction of pserine727 Stat3 and extracellular signal-regulated kinase/mitogen-activated protein kinase 1/2 (pErk1/2(MAPK)). Inhibition of pErk1/2(MAPK) induction by the mitogen-activated protein/extracellular signal-regulated kinase kinase inhibitor PD98059 [2-(2-amino-3-methoxyphenyl)-4H-1-benzopyran-4-one] blocked both the pserine727 Stat3 induction and ptyrosine705 Stat3 suppression by Cmpd1, indicating dependency on the mitogen-activated protein/extracellular signal-regulated kinase kinase-Erk1/2(MAPK) pathway for Cmpd1-induced modulation of Stat3 signaling. Cmpd1 also blocked epidermal growth factor-stimulated pStat1 induction, whereas upregulating pSrc, pAkt, p-p38, pHeat shock protein 27, and pmammalian target of rapamycin levels. However, pJanus kinase 2 and pEpidermal growth factor receptor levels were not significantly altered. Treatment of U251MG cells with Cmpd1 reduced in vitro colony formation, induced cell cycle arrest in the G2/M phase and cleavage of caspases 3, 8, and 9 and poly(ADP ribose) polymerase, and suppressed survivin, myeloid cell leukemia 1, Bcl-xL, cyclin D1, and cyclin B1 expression. Taken together, these data identify a novel mechanism for the inhibition of Stat3 signaling by a resveratrol analog and suggest that the preferential growth inhibitory effects of Cmp1 occur in part by Erk1/2(MAPK)-dependent modulation of constitutively active Stat3.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4551051 | PMC |
http://dx.doi.org/10.1124/mol.115.099093 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!