Osteosarcoma (OS) is the most commonly diagnosed primary malignancy affecting the bone. UbcH10 is a cancer-related E2-ubiquitin-conjugating enzyme. An overexpression of UbcH10 is significantly associated with tumor grade and cellular proliferation. However, limited evidence exists with regard to the biological function of UbcH10 in OS. The present study created a UbcH10 knockdown OS cell line using lentivirus-mediated RNA interference. The expression of UbcH10 was significantly reduced in UbcH10-targeted small hairpin RNA-expressing lentivirus OS cells. The downregulation of UbcH10 suppressed OS cell proliferation and colony formation ability via decreased Ki-67 expression. UbcH10 knockdown OS cells exhibited impaired invasion and migration abilities. Furthermore, knockdown of UbcH10 led to decreased levels of matrix metalloproteinase-3 and -9 in OS cells. The present study demonstrated the role of UbcH10 in OS cell proliferation, invasion and migration, which suggests that UbcH10 may be a potential candidate for OS therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4467328PMC
http://dx.doi.org/10.3892/ol.2015.3023DOI Listing

Publication Analysis

Top Keywords

ubch10
11
lentivirus-mediated rna
8
rna interference
8
ubch10 knockdown
8
expression ubch10
8
cell proliferation
8
invasion migration
8
interference targeting
4
targeting ubch10
4
ubch10 reduces
4

Similar Publications

Substrate polyubiquitination drives a myriad of cellular processes, including the cell cycle, apoptosis and immune responses. Polyubiquitination is highly dynamic, and obtaining mechanistic insight has thus far required artificially trapped structures to stabilize specific steps along the enzymatic process. So far, how any ubiquitin ligase builds a proteasomal degradation signal, which is canonically regarded as four or more ubiquitins, remains unclear.

View Article and Find Full Text PDF

TNFR1 and TNFR2, Which Link NF-κB Activation, Drive Lung Cancer Progression, Cell Dedifferentiation, and Metastasis.

Cancers (Basel)

August 2023

Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.

TNFR1 and TNFR2, encoded by and , respectively, are the most well-characterized members among the TNFR superfamily. TNFR1 is expressed in most cell types, while TNFR2 has been reported to be preferentially expressed in leukocytes. Lung cancer remains the leading cause of cancer mortality worldwide but TNFRs' activities in lung cancer development have not been fully evaluated.

View Article and Find Full Text PDF

Despite significant advances in the diagnosis and treatment of esophageal squamous cell carcinoma (ESCC), esophageal cancer is still a heavy social and medical burden due to its high incidence. Uncontrolled division and proliferation is one of the characteristics of tumor cells, which will promote rapid tumor growth and metastasis. Early mitotic inhibitor 1 (Emi1), ubiquitin-conjugating enzyme 10 (UBCH10) and CyclinB1 are important proteins involved in the regulation of cell cycle.

View Article and Find Full Text PDF

p21 (p21) is a universal cyclin-dependent kinase (CDK) inhibitor that halts cell proliferation and tumor growth by multiple mechanisms. The expression of p21 is often downregulated in cancer cells as a result of the loss of function of transcriptional activators, such as p53, or the increased degradation rate of the protein. To identify small molecules that block the ubiquitin-mediated degradation of p21 as a future avenue for cancer drug discovery, we have screened a compound library using a cell-based reporter assay of p21 degradation.

View Article and Find Full Text PDF

Among various post-translational modifications of histones, ubiquitylation plays a crucial role in transcription regulation. Histone mono-ubiquitylation by RING finger motif-containing ubiquitin ligases is documented in this respect. The RING finger ligases primarily regulate the cell cycle, where the anaphase-promoting complex/cyclosome (APC/C) takes charge as mitotic ubiquitin machinery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!