Purpose: Due to the increasing use of wireless technology in developing countries, particularly mobile phones, the influence of electromagnetic fields (EMF) on biologic systems has become the subject of an intense debate. Therefore, in this study we investigated the effect of 2.1 GHz EMF on contractility and beta-adrenergic (β-AR) responsiveness of ventricular myocytes.

Materials And Methods: Rats were randomized to the following groups: Sham rats (SHAM) and rats exposed to 2.1 GHz EMF for 2 h/day for 10 weeks (EM-10). Sarcomere shortening and Ca(2+) transients were recorded in isolated myocytes loaded with Fura2-AM and electrically stimulated at 1 Hz, while L-type Ca(2+) currents (I(CaL)) were measured using whole-cell patch clamping at 36 ± 1°C. Cardiac nitric oxide (NO) levels were measured in tissue samples using a colorimetric assay kit.

Results: Fractional shortening and amplitude of the matched Ca(2+) transients were not changed in EM-10 rats. Although the isoproterenol-induced (10(-6) M) I(CaL) response was reduced in rats exposed to EMF, basal I(CaL) density in myocytes was similar between the two groups (p < 0.01). Moreover, EMF exposure led to a significant increase in nitric oxide levels in rat heart (p < 0.02).

Conclusions: Long-term exposure to 2.1 GHz EMF decreases β-AR responsiveness of ventricular myocytes through NO signaling.

Download full-text PDF

Source
http://dx.doi.org/10.3109/09553002.2015.1068462DOI Listing

Publication Analysis

Top Keywords

ca2+ transients
12
nitric oxide
12
ghz emf
12
ventricular myocytes
8
β-ar responsiveness
8
responsiveness ventricular
8
sham rats
8
rats exposed
8
oxide levels
8
emf
6

Similar Publications

Background: In neuroscience, Ca imaging is a prevalent technique used to infer neuronal electrical activity, often relying on optical signals recorded at low sampling rates (3 to 30 Hz) across multiple neurons simultaneously. This study investigated whether increasing the sampling rate preserves critical information that may be missed at slower acquisition speeds.

Methods: Primary neuronal cultures were prepared from the cortex of newborn pups.

View Article and Find Full Text PDF

Transient Receptor Potential Melastatin 8 (TRPM8) is a non-selective, Ca-permeable cation channel involved in thermoregulation and other physiological processes, such as basal tear secretion, cell differentiation, and insulin homeostasis. The activation and deactivation of TRPM8 occur through genetic modifications, channel interactions, and signaling cascades. Recent evidence suggests a significant role of TRPM8 in the hypothalamus and amygdala related to pain sensation and sexual behavior.

View Article and Find Full Text PDF

Calcium (Ca)-dependent signalling plays a well-characterised role in the perception and response mechanisms to environmental stimuli in plant cells. In the context of a constantly changing environment, it is fundamental to understand how crop yield and microalgal biomass productivity are affected by external factors. Ca signalling is known to be important in different physiological processes in microalgae but many of these signal transduction pathways still need to be characterised.

View Article and Find Full Text PDF

Enhancing Photodynamic Therapy Efficacy via Photo-Triggered Calcium Overload and Oxygen Delivery in Tumor Hypoxia Management.

ACS Appl Mater Interfaces

January 2025

Department of Ultrasound, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing 400010, China.

: Photodynamic therapy (PDT) has emerged as a promising treatment for cancer, primarily due to its ability to generate reactive oxygen species (ROS) that directly induce tumor cell death. However, the hypoxic microenvironment commonly found within tumors poses a significant challenge by inhibiting ROS production. This study aims to investigate the effect of improving tumor hypoxia on enhancing PDT.

View Article and Find Full Text PDF

The antioxidant property of CAPE depends on TRPV1 channel activation in microvascular endothelial cells.

Redox Biol

January 2025

Laboratory for Research in Functional Nutrition, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Av. El Líbano 5524, Macul, Santiago, 7830490, Chile. Electronic address:

Caffeic acid phenethyl ester (CAPE) is a hydrophobic phytochemical typically found in propolis that acts as an antioxidant, anti-inflammatory and cardiovascular protector, among several other properties. However, the molecular entity responsible for recognising CAPE is unknown, and whether that molecular interaction is involved in developing an antioxidant response in the target cells remains an unanswered question. Herein, we hypothesized that a subfamily of TRP ion channels works as the molecular entity that recognizes CAPE at the plasma membrane and allows a fast shift in the antioxidant capacity of intact endothelial cells (EC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!