Synthesis and in Vitro Anticancer Activity of the First Class of Dual Inhibitors of REV-ERBβ and Autophagy.

J Med Chem

Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy.

Published: August 2015

AI Article Synopsis

  • Autophagy inhibition is gaining attention as a potential cancer treatment, particularly with the role of the circadian nuclear receptor REV-ERBβ in supporting cancer cell survival when autophagy is blocked.
  • A novel compound called ARN5187 has been identified as a dual inhibitor of REV-ERBβ and autophagy, showing improved effectiveness against BT-474 breast cancer cells compared to the standard autophagy inhibitor, chloroquine.
  • Further research led to the discovery of new analogs that are even more effective at inhibiting REV-ERBβ and killing cancer cells at much lower doses than chloroquine while sparing normal mammary cells from toxicity.

Article Abstract

Autophagy inhibition is emerging as a promising anticancer strategy. We recently reported that the circadian nuclear receptor REV-ERBβ plays an unexpected role in sustaining cancer cell survival when the autophagy flux is compromised. We also identified 4-[[[1-(2-fluorophenyl)cyclopentyl]amino]methyl]-2-[(4-methylpiperazin-1-yl)methyl]phenol, 1 (ARN5187), as a novel dual inhibitor of REV-ERBβ and autophagy. 1 had improved cytotoxicity against BT-474 breast cancer cells compared to chloroquine, a clinically relevant autophagy inhibitor. Here, we present the results of structure-activity studies, based around 1, that disclose the first class of dual inhibitors of REV-ERBβ and autophagy. This study led to identification of 18 and 28, which were more effective REV-ERBβ antagonists than 1 and were more cytotoxic to BT-474. The combination of optimal chemical and structural moieties of these analogs generated 30, which elicited 15-fold greater REV-ERBβ inhibitory and cytotoxic activities compared to 1. Furthermore, 30 induced death in a panel of tumor cell lines at doses 5-50 times lower than an equitoxic amount of chloroquine but did not affect the viability of normal mammary epithelial cells.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jmedchem.5b00511DOI Listing

Publication Analysis

Top Keywords

rev-erbβ autophagy
12
class dual
8
dual inhibitors
8
inhibitors rev-erbβ
8
rev-erbβ
6
autophagy
6
synthesis vitro
4
vitro anticancer
4
anticancer activity
4
activity class
4

Similar Publications

T-cell prolymphocytic leukemia (T-PLL) is an aggressive lymphoid malignancy with limited treatment options. To discover new treatment targets for T-PLL, we performed high-throughput drug sensitivity screening on 30 primary patient samples ex-vivo. After screening over 2'800 unique compounds, we found T-PLL to be more resistant to most drug classes, including chemotherapeutics, compared to other blood cancers.

View Article and Find Full Text PDF

The intracellular protozoan Toxoplasma gondii manipulates host cell signaling to avoid targeting by autophagosomes and lysosomal degradation. Epidermal Growth Factor Receptor (EGFR) is a mediator of this survival strategy. However, EGFR expression is limited in the brain and retina, organs affected in toxoplasmosis.

View Article and Find Full Text PDF

With the rapid increase in the number of implant operations, the incidence of bone infections has increased. Methicillin-resistant Staphylococcus aureus (S. aureus) and other emerging fully drug-resistant strains make the management of bone infections even more challenging.

View Article and Find Full Text PDF

Introduction: Lupus nephritis (LN) is one of the most frequent and serious organic manifestations of systemic lupus erythematosus (SLE). Autophagy, a new form of programmed cell death, has been implicated in a variety of renal diseases, but the relationship between autophagy and LN remains unelucidated.

Methods: We analyzed differentially expressed genes (DEGs) in kidney tissues from 14 LN patients and 7 normal controls using the GSE112943 dataset.

View Article and Find Full Text PDF

In gastric cancer, the relationship between human epidermal growth factor receptor 2 (HER2), the cyclic GMP-AMP synthase-stimulator of the interferon genes (cGAS-STING) pathway, and autophagy remains unclear. This study examines whether HER2 regulates autophagy in gastric cancer cells via the cGAS-STING signaling pathway, influencing key processes such as cell proliferation and migration. Understanding this relationship could uncover new molecular targets for diagnosis and treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!