Beating in vivo-like human cardiac bodies (CBs) were used in a microfluidic device for testing cardiotoxicity. The CBs, cardiomyocyte cell clusters derived from induced pluripotent stem cells, exhibited typical structural and functional properties of the native human myocardium. The CBs were captured in niches along a perfusion channel in the device. Video imaging was utilized for automatic monitoring of the beating frequency of each individual CB. The device allowed assessment of cardiotoxic effects of drug substances doxorubicin, verapamil and quinidine on the 3D clustered cardiomyocytes. Beating frequency data recorded over a period of 6 hours are presented and compared to literature data. The results indicate that this microfluidic setup with imaging of CB characteristics provides a new opportunity for label-free, non-invasive investigation of toxic effects in a 3D microenvironment.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5lc00449gDOI Listing

Publication Analysis

Top Keywords

beating frequency
12
vivo-like human
8
human cardiac
8
cardiac bodies
8
microfluidic device
8
stem cell
4
cell derived
4
derived vivo-like
4
bodies microfluidic
4
device
4

Similar Publications

Background: Excessive supraventricular ectopic activity (ESVEA) is regarded as a risk marker for later atrial fibrillation (AF) detection.

Methods And Results: The investigator-initiated, prospective, open, multicenter MonDAFIS (Impact of Standardized Monitoring for Detection of Atrial Fibrillation in Ischemic Stroke) study randomized 3465 patients with acute ischemic stroke without known AF 1:1 to usual diagnostic procedures for AF detection or additive Holter monitoring in hospital for up to 7 days, analyzed in a core laboratory. Secondary study objectives include the comparison of recurrent stroke, myocardial infarction, major bleeding, and all-cause death within 24 months in patients with ESVEA (defined as ectopic supraventricular beats ≥480/day or atrial runs of 10-29 seconds or both) versus patients with newly diagnosed AF versus patients without ESVEA or AF (non-ESVEA/AF), randomized to the intervention group.

View Article and Find Full Text PDF

Objective: This study investigated the long-term health risks associated with occupational noise exposure. By using 9 years of health examination data from a major manufacturing company in Taiwan, this study compared the health indices of employees in noise-intensive and non-noise-intensive work environments.

Methods: A retrospective analysis of 6278 health examination reports spanning 9 years was conducted to compare 20 health indices among 166 employees evenly distributed between noise-intensive and non-noise-intensive workgroups.

View Article and Find Full Text PDF

Objectives: To evaluate the association between heart rate on admission and mortality in elderly patients with hip fractures.

Design: A retrospective cohort study.

Setting: At a trauma centre in northwestern China.

View Article and Find Full Text PDF

Background: Traumatic brain injury (TBI) disrupts normal brain tissue and functions, leading to high mortality and disability. Severe TBI (sTBI) causes prolonged cognitive, functional, and multi-organ dysfunction. Dysfunction of the autonomic nervous system (ANS) after sTBI can induce abnormalities in multiple organ systems, contributing to cardiovascular dysregulation and increased mortality.

View Article and Find Full Text PDF

Backward swimming in elongated-bodied abyssal demersal fishes: Synaphobranchidae, Macrouridae, and Ophidiidae.

J Fish Biol

January 2025

Minderoo-UWA Deep-Sea Research Centre, School of Biological Sciences and Oceans Institute, The University of Western Australia, Perth, Western Australia, Australia.

The deep-sea demersal fish fauna is characterized by a prevalence of elongated-body forms with long tapering tails. Using baited camera landers at depths of 4500-6300 m in the Pacific Ocean, we observed multiple instances of backward swimming using reverse undulation of the slender body in four species: the cutthroat eel Ilyophis robinsae, abyssal grenadier Coryphaenoides yaquinae, and cusk-eels Bassozetus sp. and Barathrites iris.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!