Mycolic acids: deciphering and targeting the Achilles' heel of the tubercle bacillus.

Mol Microbiol

School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.

Published: October 2015

Mycolic acids are unique long chain fatty acids found in the lipid-rich cell walls of mycobacteria including the tubercle bacillus Mycobacterium tuberculosis. Essential for viability and virulence, enzymes involved in the biosynthesis of mycolic acids represent novel targets for drug development. This is particularly relevant to the impact on global health given the rise of multidrug resistant and extensively drug resistant strains of M. tuberculosis. In this review, we discuss recent advances in our understanding of how mycolic acid are synthesised, especially the potential role of specialised fatty acid synthase complexes. Also, we examine the role of a recently reported mycolic acid transporter MmpL3 with reference to several reports of the targeting of this transporter by diverse compounds with anti-M. tuberculosis activity. Additionally, we consider recent findings that place mycolic acid biosynthesis in the context of the cell biology of the bacterium, viz its localisation and co-ordination with the bacterial cytoskeleton, and its role beyond maintaining cell envelope integrity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4949712PMC
http://dx.doi.org/10.1111/mmi.13101DOI Listing

Publication Analysis

Top Keywords

mycolic acids
12
mycolic acid
12
tubercle bacillus
8
mycolic
6
acids deciphering
4
deciphering targeting
4
targeting achilles'
4
achilles' heel
4
heel tubercle
4
bacillus mycolic
4

Similar Publications

Four novel nontuberculous mycobacteria were discovered from a historical strain collection at the International Reference Laboratory of Mycobacteriology at Statens Serum Institut in Copenhagen, Denmark. Phylogenetic analysis combining the 16S , internal transcribed spacer and 23S elements, as well as a single-copy core-gene (, , and ) analysis of these freeze-dried mycobacteria, clinically isolated from gastric lavage samples between 1948 and 1955, showed to be associated with type strains grouping within the Terra and Fortuitum-Vaccae clade. Phenotypic characteristics, biochemical properties and fatty acid and mycolic acid profiles supported the classification as novel strains.

View Article and Find Full Text PDF

Manipulation and Structural Activity of AcpM in .

Biochemistry

January 2025

Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States.

(Mtb) is a leading cause of death, with an escalating global occurrence of drug-resistant infections that are partially attributed to cell wall mycolic acids derived from type II fatty acid biosynthesis (FAS-II). Here, the central acyl carrier protein, AcpM, contributes to the regulation of complex and specific protein-protein interactions (PPIs), though the orchestration of these events remain largely unresolved due to unique features of AcpM. Limitations include complexities in generating modified AcpM in a single state.

View Article and Find Full Text PDF

Domain architecture of the MabR (), a member of the PucR transcription factor family.

Heliyon

November 2024

Unit of Microbiology, Bioorganic and Macromolecular Chemistry, Department of Research in Drug Development, Faculty of Pharmacy, Université Libre de Bruxelles, Belgium.

MabR (), a PucR-type transcription factor, plays a crucial role in regulating mycolic acid biosynthesis in . To understand its regulatory mechanisms, we determined the crystal structures of its N-terminal and C-terminal domains. The N-terminal domain adopts a globin-like fold, while the C-terminal domain comprises an α/β GGDEF domain and an all-α effector domain with a helix-turn-helix DNA-binding motif.

View Article and Find Full Text PDF

Application of Monoclonal Anti-Mycolate Antibodies in Serological Diagnosis of Tuberculosis.

Trop Med Infect Dis

November 2024

Future Production: Chemicals, Council for Scientific and Industrial Research, Pretoria 0081, South Africa.

Article Synopsis
  • - Patient loss to follow-up due to expensive and centralized diagnostics for tuberculosis is a major challenge, stressing the need for a more accessible testing method.
  • - Current biomarkers, specifically antibodies against mycolic acids in mycobacterial cell walls, show potential but are hard to detect with typical rapid tests because they are of low affinity.
  • - Researchers have developed a new method for detecting mycolic acid antibodies using engineered monoclonal antibodies, leading to the creation of a novel lateral flow immunoassay called MALIA, which shows promise for practical tuberculosis testing.
View Article and Find Full Text PDF

Tuberculosis continues to pose a health challenge causing the loss of millions of lives despite the existence of multiple drugs, for treatment. The emergence of drug-resistant strains has made the situation more complex making it increasingly difficult to fight against this disease. This review outlines the challenges associated with TB drug discovery, the nature of Mycobacterium tuberculosis shedding light on the mechanisms that lead to treatment failure and antibiotic resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!