In situ cooling with ice water for the easier removal of self-expanding nitinol stents.

Endosc Int Open

Clinic for Internal Medicine, St. Hedwig-Krankenhaus, Berlin, Germany.

Published: February 2015

Background: It is yet to be determined what effects temperature has on the properties of nitinol in order to simplify the process of removing nitinol self-expanding metal stents (SEMS).

Materials And Methods: We describe the procedure for removal of SEMS in a total of 11 cases with 9 patients. A study involving cooling of nitinol stents in situ with ice water just before their removal was attempted.

Results: All stents were removed successfully. In partially covered and in fully covered stents, the stent rigidity was noticeably reduced following cooling. Stent removal was performed by inversion, which was achieved by pulling on the stent from its distal end. No adverse events were observed during this trial.

Conclusion: The higher pliability of the stents after ice-water cooling facilitates stent removal. With this method, a mobilization of all stents by the invagination technique was achieved. The separation of the uncoated stent ends from the intestinal wall by the invagination technique, as well as the mucosal vasoconstriction resulting from the cooling, lead to an easier SEMS removal and may serve to prevent severe bleeding of the mucosal wall during this process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4423297PMC
http://dx.doi.org/10.1055/s-0034-1390760DOI Listing

Publication Analysis

Top Keywords

ice water
8
nitinol stents
8
stent removal
8
invagination technique
8
stents
7
removal
6
stent
5
situ cooling
4
cooling ice
4
water easier
4

Similar Publications

Aerosols containing biological material (i.e., bioaerosols) impact public health by transporting toxins, allergens, and diseases and impact the climate by nucleating ice crystals and cloud droplets.

View Article and Find Full Text PDF

Effect of Hydration States on the Anti-Icing/Frosting Performance of Zwitterionic Hydrogel-Coated Surfaces.

Langmuir

January 2025

Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.

Zwitterionic polymers have gained considerable research attention because of their unique properties and have been widely used in many biomedical and electrochemical applications. Recently, zwitterionic polymers have been investigated for use as anti-icing/frosting surfaces; however, key factors influencing their anti-icing/frosting performance and effectiveness under real operational conditions remain underexplored. Therefore, in this study, we quantitatively analyze the hydration states of zwitterionic hydrogels synthesized from polymerizable zwitterions, such as carboxybetaine methacrylate (CBMA), 2-methacryloyloxyethyl phosphorylcholine (MPC), and sulfobetaine methacrylate (SBMA).

View Article and Find Full Text PDF

The biodiversity of ice-free Antarctica database.

Ecology

January 2025

Securing Antarctica's Environmental Future, School of Biological Sciences, Monash University, Melbourne, Victoria, Australia.

Antarctica is one of Earth's most untouched, inhospitable, and poorly known regions. Although knowledge of its biodiversity has increased over recent decades, a diverse, wide-ranging, and spatially explicit compilation of the biodiversity that inhabits Antarctica's permanently ice-free areas is unavailable. This absence hinders both Antarctic biodiversity research and the integration of Antarctica in global biodiversity-related studies.

View Article and Find Full Text PDF

The primary production of fjords across the Arctic and Subarctic is undergoing significant transformations due to the climatically driven retreat of glaciers and ice sheets. However, the implications of these changes for upper trophic levels remain largely unknown. In this study, we employ both bulk and compound-specific stable isotope analyses to investigate how shifts at the base of fjord food webs impact the carbon and energy sources of consumers.

View Article and Find Full Text PDF

Passive Radiant Cooling and Heating are green and sustainable methods of radiant heat management without consuming additional energy. However, the absorption of sunlight and poor insulation of materials can reduce radiative cooling and also affect radiative heating performance. Herein, we have constructed porous hierarchical dual-mode silk nanofibrous aerogel (SNF) films with high mechanical toughness and stability using silk nanofibers/GO.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!