LAH4-L1 is a synthetic amphipathic peptide with antimicrobial activity. The sequence of the 23 amino acid peptide was inspired by naturally occurring frog peptides such as PGLa and magainin. LAH4-L1 also facilitates the transport of nucleic acids through the cell membrane. We have investigated the membrane binding properties and energetics of LAH4-L1 at pH 5.5 with physical-chemical methods. CD spectroscopy was employed to quantitate the membrane-induced random coil-to-helix transition of LAH4-L1. Binding isotherms were obtained with CD spectroscopy as a function of the lipid-to-protein ratio for neutral and negatively charged membranes and were analyzed with both the Langmuir multisite adsorption model and the surface partition/Gouy-Chapman model. According to the Langmuir adsorption model each molecule LAH4-L1 binds 4 POPS molecules, independent of the POPS concentration in the membrane. This is supported by the surface partition/Gouy-Chapman model which predicts an electric charge of LAH4-L1 of z = 4. Binding affinity is dominated by electrostatic attraction. The thermodynamics of the binding process was elucidated with isothermal titration calorimetry. The ITC data revealed that the binding process is composed of at least three different reactions, that is, a coil-to-helix transition with an exothermic enthalpy of about -11 kcal/mol and two endothermic processes with enthalpies of ∼4 and ∼8 kcal/mol, respectively, which partly compensate the exothermic enthalpy of the conformational change. The major endothermic reaction is interpreted as a deprotonation reaction following the insertion of a highly charged cationic peptide into a nonpolar environment.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.5b04543DOI Listing

Publication Analysis

Top Keywords

coil-to-helix transition
8
lah4-l1 binding
8
adsorption model
8
surface partition/gouy-chapman
8
partition/gouy-chapman model
8
binding process
8
exothermic enthalpy
8
lah4-l1
6
binding
5
thermodynamic biophysical
4

Similar Publications

Kinetic Implications of IP Anion Binding on the Molecular Switch of the HIV-1 Capsid Assembly.

bioRxiv

December 2024

Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, IL 60637, United States of America.

HIV-1 capsid proteins (CA) self-assemble into a fullerene-shaped capsid, enabling cellular transport and nuclear entry of the viral genome. A structural switch comprising the Thr-Val-Gly-Gly (TVGG) motif either assumes a disordered coil or a 3 helix conformation to regulate hexamer or pentamer assembly, respectively. The cellular polyanion inositol hexakisphosphate (IP6) binds to a positively charged pore of CA capsomers rich in arginine and lysine residues mediated by electrostatic interactions.

View Article and Find Full Text PDF

DNA binding reveals hidden interdomain allostery of a MazE antitoxin from Mycobacterium tuberculosis.

Biochem Biophys Res Commun

May 2024

Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon-si, 11160, Gyeonggi-Do, Republic of Korea. Electronic address:

Type II toxin-antitoxin (TA) systems are ubiquitously distributed genetic elements in prokaryotes and are crucial for cell maintenance and survival under environmental stresses. The antitoxin is a modular protein consisting of the disordered C-terminal region that physically contacts and neutralizes the cognate toxin and the well-folded N-terminal DNA binding domain responsible for autorepression of TA transcription. However, how the two functional domains communicate is largely unknown.

View Article and Find Full Text PDF

It is well established that solutions of both polymeric and oligomeric κ-carrageenan exhibit a clear change in optical rotation (OR), in concert with gel-formation for polymeric samples, as the solution is cooled in the presence of certain ions. The canonical interpretation - that this OR change reflects a 'coil-to-helix transition' in single chains - has seemed unambiguous; the solution- or 'disordered'-state structure has ubiquitously been assumed to be a 'random coil', and the helical nature of carrageenan in the solid-state was settled in the 1970s. However, recent work has found that κ-carrageenan contains substantial helical secondary structure elements in the disordered-state, raising doubts over the validity of this interpretation.

View Article and Find Full Text PDF

Manipulation of pH responsiveness is a frequently employed tactic in the formulation of trigger-responsive nanomaterials. It offers an avenue for "smart" designs capitalizing on distinctive pH gradients across diverse tissues and intracellular compartments. However, an overwhelming majority of documented functional groups (>80%) exhibit responsiveness solely to the heightened acidic of intracellular pH (about 4.

View Article and Find Full Text PDF

This study focused on GSK-3β, a critical serine/threonine kinase with diverse cellular functions. However, there is limited understanding of the impact of non-synonymous single nucleotide polymorphisms (nsSNPs) on its structure and function. Through an exhaustive in-silico investigation 12 harmful nsSNPs were predicted from a pool of 172 acquired from the NCBI dbSNP database using 12 established tools that detects deleterious SNPs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!