Fulfilling the Promise of "Biased" G Protein-Coupled Receptor Agonism.

Mol Pharmacol

Departments of Medicine and Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, South Carolina (L.M.L.); Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina (L.M.L.); Translational Neurobiology Group, VIB Department of Molecular Genetics, Laboratory of Neurogenetics-Institute Born-Bunge, University of Antwerp, Belgium (S.M.); and Department of Molecular Therapeutics and Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida (L.M.B.).

Published: September 2015

AI Article Synopsis

  • Over 30% of drugs target GPCRs, indicating their significance as drug targets, especially with a shift towards biased ligands that influence specific downstream signaling pathways.
  • Biased ligands have shown potential for improving drug efficacy by selectively activating beneficial pathways while avoiding harmful ones, but they introduce complexity in drug discovery due to their unique signaling profiles.
  • Establishing a framework to relate in vitro ligand efficacy to in vivo biological responses is crucial for developing successful biased GPCR therapeutics and addressing the challenges these novel drugs present.

Article Abstract

The fact that over 30% of current pharmaceuticals target heptahelical G protein-coupled receptors (GPCRs) attests to their tractability as drug targets. Although GPCR drug development has traditionally focused on conventional agonists and antagonists, the growing appreciation that GPCRs mediate physiologically relevant effects via both G protein and non-G protein effectors has prompted the search for ligands that can "bias" downstream signaling in favor of one or the other process. Biased ligands are novel entities with distinct signaling profiles dictated by ligand structure, and the potential prospect of biased ligands as better drugs has been pleonastically proclaimed. Indeed, preclinical proof-of-concept studies have demonstrated that both G protein and arrestin pathway-selective ligands can promote beneficial effects in vivo while simultaneously antagonizing deleterious ones. But along with opportunity comes added complexity and new challenges for drug discovery. If ligands can be biased, then ligand classification becomes assay dependent, and more nuanced screening approaches are needed to capture ligand efficacy across several dimensions of signaling. Moreover, because the signaling repertoire of biased ligands differs from that of the native agonist, unpredicted responses may arise in vivo as these unbalanced signals propagate. For any given GPCR target, establishing a framework relating in vitro efficacy to in vivo biologic response is crucial to biased drug discovery. This review discusses approaches to describing ligand efficacy in vitro, translating ligand bias into biologic response, and developing a systems-level understanding of biased agonism in vivo, with the overall goal of overcoming current barriers to developing biased GPCR therapeutics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4551052PMC
http://dx.doi.org/10.1124/mol.115.099630DOI Listing

Publication Analysis

Top Keywords

biased ligands
12
drug discovery
8
ligand efficacy
8
biologic response
8
biased
7
ligands
6
ligand
5
fulfilling promise
4
promise "biased"
4
"biased" protein-coupled
4

Similar Publications

Objective: Cardiovascular disease in acromegaly patients remains a major cause of morbidity and all-cause mortality. This systematic review investigates the effect of the first growth hormone lowering intervention on cardiac parameters.

Design: Systematic review.

View Article and Find Full Text PDF

The anti-inflammatory role of miR-23b-3p (miR-23b) is known in autoimmune diseases like multiple sclerosis, systemic lupus erythematosus, and rheumatoid arthritis. However, its role in sepsis-related acute lung injury (ALI) and its effect on macrophages in ALI remain unexplored. This investigation aimed to evaluate miR-23b's therapeutic potential in macrophages in the context of ALI.

View Article and Find Full Text PDF

Advances in the therapeutic potentials of ligands of the apelin receptor APJ.

Eur J Pharmacol

January 2025

Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands. Electronic address:

Angiotensin II protein J receptor, APJ, is a type A G protein coupled receptor. Endogenous apelin and elabela peptides stimulate APJ via distinct signalling profiles. A complex signalling map of elabela-stimulated APJ was published in 2022.

View Article and Find Full Text PDF

In-droplet hydrogen/deuterium exchange (HDX)-mass spectrometry (MS) experiments have been conducted for peptides of highly varied conformational type. A new model is presented that combines the use of protection factors (PF) from molecular dynamics (MD) simulations with intrinsic HDX rates ( ) to obtain a structure-to-reactivity calibration curve. Using the model, the relationship of peptide structural flexibility and HDX reactivity for different peptides is elucidated.

View Article and Find Full Text PDF

Attributes novel drug candidate: Constitutive GPCR signal bias mediated by purinergic receptors.

Pharmacol Ther

January 2025

School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China.

G protein-coupled receptors (GPCRs) can transmit signals via G protein-dependent or independent pathways due to the conformational changes of receptors and ligands, which is called biased signaling. This concept posits that ligands can selectively activate a specific signaling pathway after receptor activation, facilitating downstream signaling along a preferred pathway. Biased agonism enables the development of ligands that prioritize therapeutic signaling pathways while mitigating on-target undesired effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!