Comparative Anterior Pituitary miRNA and mRNA Expression Profiles of Bama Minipigs and Landrace Pigs Reveal Potential Molecular Network Involved in Animal Postnatal Growth.

PLoS One

Chinese National Engineering Research Center for Breeding Swine Industry, SCAU-Alltech Research Joint Alliance, Guandong Provincial Key Lab of Agro-Animal Genomics And Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.

Published: April 2016

The anterior pituitary is the most important endocrine organ modulating animal postnatal growth, mainly by controlling growth hormone (GH) gene transcription, synthesis, and secretion. As an ideal model for animal postnatal growth studies, the Bama minipig is characterized as having a lower growth performance and fewer individual differences compared with larger pig breeds. In this study, anterior pituitaries from Bama minipig and Landrace pig were used for miRNA and mRNA expression profile analysis using miRNA microarrays and mRNA-seq. Consequently, a total of 222 miRNAs and 12,909 transcripts were detected, and both miRNAs and mRNAs in the two breeds showed high correlation (r > 0.97). Additionally, 41 differentially expressed miRNAs and 2,254 transcripts were identified. Pathways analysis indicated that 32 pathways significantly differed in the two breeds. Importantly, two GH-regulation-signalling pathways, cAMP and inositol 1, 4, 5-triphosphate (IP3), and multiple GH-secretion-related transcripts were significantly down-regulated in Bama minipigs. Moreover, TargetScan and RNAHybrid algorithms were used for predicting differentially expressed miRNAs (DE miRNAs) and differentially expressed mRNAs (DE mRNAs) interaction. By examining their fold-changes, interestingly, most DE miRNA-DE mRNA target pairs (63.68-71.33%) presented negatively correlated expression pattern. A possible network among miRNAs, mRNAs, and GH-regulation pathways was also proposed. Among them, two miRNA-mRNA interactions (Y-47 targets FSHB; ssc-miR-133a-3p targets GNAI3) were validated by dual-luciferase assay. These data will be helpful in understanding the possible molecular mechanisms involved in animal postnatal growth.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4489742PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0131987PLOS

Publication Analysis

Top Keywords

animal postnatal
16
postnatal growth
16
differentially expressed
12
anterior pituitary
8
mirna mrna
8
mrna expression
8
bama minipigs
8
involved animal
8
bama minipig
8
mirnas mrnas
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!