Download full-text PDF

Source
http://dx.doi.org/10.1039/c5fd90047fDOI Listing

Publication Analysis

Top Keywords

corrosion control
4
control general
4
general discussion
4
corrosion
1
general
1
discussion
1

Similar Publications

Research on hydroxyapatite (HAP) coatings for bone tissue applications has been investigated for decades due to their significant osteoconductive and bioactivity properties. HAP closely resembles the mineral component of human bone, making it ideal for biomedical applications such as implants. This study investigates the synthesis of hydroxyapatite nanoparticles (HAP-NPs) via the microemulsion method, which is essential for creating HAP coatings on the Ti-6Al-4V substrate.

View Article and Find Full Text PDF

The rational design of multicomponent heterostructure is an effective strategy to enhance the catalytic activity of electrocatalysts for water and seawater electrolysis in alkaline conditions. Herein, MOF-derived nitrogen-doped carbon/nickel-cobalt sulfides coupled vertically aligned Rhenium disulfide (ReS) on carbon cloth (NC-CoNiS@ReS/CC) are constructed via hydrothermal and activation approaches. Experimental and theoretical analysis demonstrates that the strong interactions between multiple interfaces promote electron redistribution and facilitate water dissociation, thereby optimizing *H adsorption energy for the hydrogen evolution reaction (HER).

View Article and Find Full Text PDF

A cross-linked coating loaded with antimicrobial peptides for corrosion control, early antibacterial, and sequential osteogenic promotion on a magnesium alloy as orthopedic implants.

Acta Biomater

December 2024

Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, PR China. Electronic address:

Magnesium (Mg)-based alloys have been recognized as desirable biodegradable materials for orthopedic implants. However, their clinical application has been limited by rapid degradation rates, insufficient antibacterial and osteogenic-promotion properties. Herein, a MgF priming layer was first constructed on AZ31 surface.

View Article and Find Full Text PDF

Magnetic liquid metal droplets, featured by unique fluidity, metallic conductivity, and magnetic reactivity, are of growing significance for next-generation flexible electronics. Conventional fabrication routes, which typically incorporate magnetic nanoparticles into liquid metals, otherwise encounter the pitfall pertaining to surface adhesivity and corrosivity over device modules. Here, an innovative approach of synergizing liquid metals with 2D magnetic materials is presented, accordingly creating chromium(III)-telluride-coated liquid metal (CT-LM) droplets via a simple self-assembly process.

View Article and Find Full Text PDF

380 MPa-30% grade biodegradable Zn-Mn-Mg-Ca alloy: Bimodal grain structure, large work-hardening strain, and enhanced biocompatibility.

Acta Biomater

December 2024

Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China; Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang 110004, China. Electronic address:

Strain softening is a common issue for high-strength biodegradable Zn alloys. We developed Zn-0.6Mn-0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!