Botulinum neurotoxins (BoNTs) have been widely used to treat a variety of clinical ailments associated with pain. The inhibitory action of BoNTs on synaptic vesicle fusion blocks the releases of various pain-modulating neurotransmitters, including glutamate, substance P (SP), and calcitonin gene-related peptide (CGRP), as well as the addition of pain-sensing transmembrane receptors such as transient receptor potential (TRP) to neuronal plasma membrane. In addition, growing evidence suggests that the analgesic and anti-inflammatory effects of BoNTs are mediated through various molecular pathways. Recent studies have revealed that the detailed structural bases of BoNTs interact with their cellular receptors and SNAREs. In this review, we discuss the molecular and cellular mechanisms related to the efficacy of BoNTs in alleviating human pain and insights on engineering the toxins to extend therapeutic interventions related to nociception.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4516922 | PMC |
http://dx.doi.org/10.3390/toxins7072435 | DOI Listing |
Toxins (Basel)
January 2025
Executive Committee of Agorà-Italian Society of Aesthetic Medicine, 20122 Milan, Italy.
Advances in oncological treatments have improved the survival rates of cancer patients but have often resulted in significant physical changes that negatively impact their self-esteem and psychological well-being. Cancer patients frequently ask esthetic practitioners to perform procedures to address such changes. However, practitioners often hesitate to satisfy such requests due to lacking guidelines or recommendations.
View Article and Find Full Text PDFVaccines (Basel)
January 2025
Division of High-Risk Pathogens, Department of Laboratory Diagnosis and Analysis, Korea Disease Control and Prevention Agency, KDCA, Cheongju 28159, Republic of Korea.
Background: Botulinum neurotoxins (BoNTs), produced by , are potent protein toxins that can cause botulism, which leads to death or neuroparalysis in humans by targeting the nervous system. BoNTs comprise three functional domains: a light-chain enzymatic domain (LC), a heavy-chain translocation domain (HC), and a heavy-chain receptor-binding domain (HC). The HC domain is critical for binding to neuronal cell membrane receptors and facilitating BoNT internalization via endocytosis.
View Article and Find Full Text PDFNat Struct Mol Biol
January 2025
Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA.
Botulinum neurotoxins (BoNTs) rank among the most potent toxins and many of them are produced by bacteria carrying the orfX gene cluster that also encodes four nontoxic proteins (OrfX1, OrfX2, OrfX3 and P47). The orfX gene cluster is also found in the genomes of many non-BoNT-producing bacteria, often alongside genes encoding oral insecticidal toxins. However, the functions of these OrfXs and P47 remain elusive.
View Article and Find Full Text PDFChina CDC Wkly
December 2024
Weihai Center for Disease Control and Prevention, Weihai City, Shandong Province, China.
What Is Already Known About This Topic?: Foodborne botulism is caused by botulinum neurotoxin (BoNT). () is a strictly anaerobic, Gram-positive bacterium, which is a key pathogen capable of producing BoNT. BoNTs can be classified into seven serotypes (A to G) based on their antigenic properties.
View Article and Find Full Text PDFMicroorganisms
December 2024
Targeted Therapy Team, Institute for Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
The COVID-19 and mpox crisis has reminded the world of the potentially catastrophic consequences of biological agents. Aside from the natural risk, biological agents can also be weaponized or used for bioterrorism. Dissemination in a population or among livestock could be used to destabilize a nation by creating a climate of terror, by negatively impacting the economy and undermining institutions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!