Uterine contractions are tightly regulated by the electrical activity of myometrial smooth muscle cells (MSMCs). These cells require a depolarizing current to initiate Ca(2+) influx and induce contraction. Cationic leak channels, which permit a steady flow of cations into a cell, are known to cause membrane depolarization in many tissue types. Previously, a Gd(3+)-sensitive, Na(+)-dependent leak current was identified in the rat myometrium, but the presence of such a current in human MSMCs and the specific ion channel conducting this current was unknown. Here, we report the presence of a Na(+)-dependent leak current in human myometrium and demonstrate that the Na(+)-leak channel, NALCN, contributes to this current. We performed whole-cell voltage-clamp on fresh and cultured MSMCs from uterine biopsies of term, non-laboring women and isolated the leak currents by using Ca(2+) and K(+) channel blockers in the bath solution. Ohmic leak currents were identified in freshly isolated and cultured MSMCs with normalized conductances of 14.6 pS/pF and 10.0 pS/pF, respectively. The myometrial leak current was significantly reduced (P < 0.01) by treating cells with 10 μM Gd(3+) or by superfusing the cells with a Na(+)-free extracellular solution. Reverse transcriptase PCR and immunoblot analysis of uterine biopsies from term, non-laboring women revealed NALCN messenger RNA and protein expression in the myometrium. Notably, ∼90% knockdown of NALCN protein expression with lentivirus-delivered shRNA reduced the Gd(3+)-sensitive leak current density by 42% (P < 0.05). Our results reveal that NALCN, in part, generates the leak current in MSMCs and provide the basis for future research assessing NALCN as a potential molecular target for modulating uterine excitability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4586347PMC
http://dx.doi.org/10.1093/molehr/gav038DOI Listing

Publication Analysis

Top Keywords

leak current
24
current human
12
current
10
leak
9
myometrial smooth
8
smooth muscle
8
muscle cells
8
na+-dependent leak
8
cultured msmcs
8
uterine biopsies
8

Similar Publications

Using artificial intelligence to evaluate adherence to best practices in one anastomosis gastric bypass: first steps in a real-world setting.

Surg Endosc

January 2025

Division of General Surgery, Bariatric Unit, Tel Aviv Medical Center, Affiliated to Sackler Faculty of Medicine, Tel Aviv University, 6, Weizman St, 6423906, Tel- Aviv, Israel.

Background: Safety in one anastomosis gastric bypass (OAGB) is judged by outcomes, but it seems reasonable to utilize best practices for safety, whose performance can be evaluated and therefore improved. We aimed to test an artificial intelligence-based model in real world for the evaluation of adherence to best practices in OAGB.Please check and confirm that the authors and their respective affiliations have been correctly identified and amend if necessary.

View Article and Find Full Text PDF

Endoscopic Management of Benign Pancreaticobiliary Disorders.

J Clin Med

January 2025

Division of Gastroenterology and Hepatology, Center for Digestive Health, Virginia Mason, Franciscan Health, Seattle, WA 98101, USA.

Endoscopic management of benign pancreaticobiliary disorders encompasses a range of procedures designed to address complications in gallstone disease, choledocholithiasis, and pancreatic disorders. Acute cholecystitis is typically treated with cholecystectomy or percutaneous drainage (PT-GBD), but for high-risk or future surgical candidates, alternative decompression methods, such as endoscopic transpapillary gallbladder drainage (ETP-GBD), and endoscopic ultrasound (EUS)-guided gallbladder drainage (EUS-GBD), are effective. PT-GBD is associated with significant discomfort as well as variable adverse event rates.

View Article and Find Full Text PDF

Nanoscale photoswitchable proteins could facilitate precise spatiotemporal control of transmembrane communication and support studies in synthetic biology, neuroscience and bioelectronics. Here, through covalent modification of the α-haemolysin protein pore with arylazopyrazole photoswitches, we produced 'photopores' that transition between iontronic resistor and diode modes in response to irradiation at orthogonal wavelengths. In the diode mode, a low-leak OFF-state nanopore exhibits a reversible increase in unitary conductance of more than 20-fold upon irradiation at 365 nm.

View Article and Find Full Text PDF

Indoxyl Sulfate Induces Ventricular Arrhythmias Attenuated by Secretoneurin in Right Ventricular Outflow Tract Cardiomyocytes.

Cardiovasc Toxicol

January 2025

Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, No. 250, Wuxing St., Taipei, 11031, Taiwan.

Ventricular arrhythmias (VAs) are major causes of sudden cardiac death in chronic kidney disease (CKD) patients. Indoxyl sulfate (IS) is one common uremic toxin found in CKD patients. This study investigated whether IS could induce VAs via increasing right ventricular outflow tract (RVOT) arrhythmogenesis.

View Article and Find Full Text PDF

Fugitive or diffuse methane emissions constitute an important source of damage to the environment, much greater even than CO2 both over a time span of 20 years and over a longer time span of 100. It is therefore of preeminent importance to undertake all the efforts necessary to implement new tools, protocols, and methods that contribute to the identification and measurement of these emissions to implement site-specific actions of mitigation, repair, and conscious management of the emitting plants. Among the remote sensing and leak detection technologies currently used, the tunable diode laser absorption spectroscopy (TDLAS) method plays a relevant role.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!