Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Here, we propose a comparison-free inspection technique to detect particle contamination on the reticle of extreme ultraviolet (EUV) lithography systems, based on the photoluminescence spectral characteristics of the contaminant particles and their elemental composition. We have analyzed the spectra from different particles found on reticles in EUV lithographic systems and have determined the minimum detectable particle size: 25 nm for organic particles and 100 nm for Al particles. Stainless steel coatings (50 nm thick and 50 × 50 μm(2) in area) exhibit detectable photoluminescence, and the estimated minimum detectable particle is 2 μm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4922883 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!