Hierarchical and symmetric infant image registration by robust longitudinal-example-guided correspondence detection.

Med Phys

Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 and Department of Brain and Cognitive Engineering, Korea University, Seoul 136-701, Republic of Korea.

Published: July 2015

Purpose: To investigate anatomical differences across individual subjects, or longitudinal changes in early brain development, it is important to perform accurate image registration. However, due to fast brain development and dynamic tissue appearance changes, it is very difficult to align infant brain images acquired from birth to 1-yr-old.

Methods: To solve this challenging problem, a novel image registration method is proposed to align two infant brain images, regardless of age at acquisition. The main idea is to utilize the growth trajectories, or spatial-temporal correspondences, learned from a set of longitudinal training images, for guiding the registration of two different time-point images with different image appearances. Specifically, in the training stage, an intrinsic growth trajectory is first estimated for each training subject using the longitudinal images. To register two new infant images with potentially a large age gap, the corresponding images patches between each new image and its respective training images with similar age are identified. Finally, the registration between the two new images can be assisted by the learned growth trajectories from one time point to another time point that have been established in the training stage. To further improve registration accuracy, the proposed method is combined with a hierarchical and symmetric registration framework that can iteratively add new key points in both images to steer the estimation of the deformation between the two infant brain images under registration.

Results: To evaluate image registration accuracy, the proposed method is used to align 24 infant subjects at five different time points (2-week-old, 3-month-old, 6-month-old, 9-month-old, and 12-month-old). Compared to the state-of-the-art methods, the proposed method demonstrated superior registration performance.

Conclusions: The proposed method addresses the difficulties in the infant brain registration and produces better results compared to existing state-of-the-art registration methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4474954PMC
http://dx.doi.org/10.1118/1.4922393DOI Listing

Publication Analysis

Top Keywords

image registration
16
infant brain
16
proposed method
16
align infant
12
brain images
12
registration
11
images
11
hierarchical symmetric
8
brain development
8
images age
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!