The major objective of in vitro-in vivo correlations is to be able to use in vitro data to predict in vivo performance serving as a surrogate for an in vivo bioavailability test and to support biowaivers. Therefore, the aims of this review are: (i) to clarify the factors involved during bio-predictive dissolution method development; and (ii) the elements that may affect the mathematical analysis in order to exploit all information available. This article covers the basic aspects of dissolution media and apparatus used in the development of in vivo predictive dissolution methods, including the latest proposals in this field as well as the summary of the mathematical methods for establishing the in vitro-in vivo relationship and their scope and limitations. The incorporation of physiological relevant factors in the in vitro dissolution method is essential to get accurate in vivo predictions. Standard quality control dissolution methods do not necessarily reflect the in vivo behavior, so they rarely are useful for predicting in vivo performance. The combination of physiological based dissolution methods with physiological-based pharmacokinetics models incorporating gastrointestinal variables will lead to robust tools for drug and formulation development, nevertheless their regulatory use for biowaiver application still require harmonization of the mathematical methods proposed and more detailed recommendations about the procedures for setting up dissolution specifications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/03639045.2015.1054833 | DOI Listing |
NPJ Regen Med
January 2025
Institute of Molecular Cardiology, Department of Medicine, University of Louisville, Louisville, USA.
Cardiomyocytes (CMs) lost during ischemic cardiac injury cannot be replaced due to their limited proliferative capacity. Calcium is an important signal transducer that regulates key cellular processes, but its role in regulating CM proliferation is incompletely understood. Here we show a robust pathway for new calcium signaling-based cardiac regenerative strategies.
View Article and Find Full Text PDFChem Biodivers
January 2025
Birla Institute of Technology, Pharmaceutical Sciences & Technology, Dept of pharmaceutical sciences & Technology,BIT, Mesra, Ranchi, BIT,Mesra, Ranchi, 835215, Ranchi, INDIA.
This study was conducted to investigate the anti-obesity effects of bioactive fractions JAF2 and JAF3 from Justicia adhatoda (JA) in vitro using enzymatic assays, 3T3-L1 cells and in vivo using a monosodium glutamate-high-fat diet (MSG-HFD) model. High-Performance Thin Layer Chromatography coupled with Mass Spectrometry (HPTLC-MS-MSn) was finally utilized to analyze bioactive fractions for the compounds responsible for the activity. In vitro, the anti-obesity effects of JAF2 and JAF3 were assessed in 3T3-L1 adipocytes, revealing that JAF2 significantly reduced lipid and triglyceride levels.
View Article and Find Full Text PDFNutrients
December 2024
Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
Flavonoids are naturally occurring polyphenolic compounds known for their extensive range of biological activities. This review focuses on the inhibitory effects of flavonoids on acetylcholinesterase (AChE) and their potential as therapeutic agents for cognitive dysfunction. AChE, a serine hydrolase that plays a crucial role in cholinergic neurotransmission, is a key target in the treatment of cognitive impairments due to its function in acetylcholine hydrolysis.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 17 Agiou Thoma Street, 11527 Athens, Greece.
Diabetes mellitus (DM), a global disease that significantly impacts public health, has become increasingly common over time. In this review, we aim to determine the potential benefits of St. John's Wort (SJW) as an adjunct therapy for DM.
View Article and Find Full Text PDFInt J Antimicrob Agents
January 2025
Department of Pharmacy, Uppsala University, SE-75123, Uppsala, Sweden. Electronic address:
Objectives: To expand a translational pharmacokinetic-pharmacodynamic (PKPD) modelling approach for assessing the combined effect of polymyxin B and minocycline against Klebsiella pneumoniae.
Methods: A PKPD model developed based on in vitro static time-kill experiments of one strain (ARU613) was first translated to characterize that of a more susceptible strain (ARU705), and thereafter to dynamic time-kill experiments (both strains) and to a murine thigh infection model (ARU705 only). The PKPD model was updated stepwise using accumulated data.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!