Synthetic glycopolymers are instrumental and versatile tools used in various biochemical and biomedical research fields. An example of a facile and efficient synthesis of well-controlled fluorescent statistical glycopolymers using reversible addition-fragmentation chain-transfer (RAFT)-based polymerization is demonstrated. The synthesis starts with the preparation of β-galactose-containing glycomonomer 2-lactobionamidoethyl methacrylamide obtained by reaction of lactobionolactone and N-(2-aminoethyl) methacrylamide (AEMA). 2-Gluconamidoethyl methacrylamide (GAEMA) is used as a structural analog lacking a terminal β-galactoside. The following RAFT-mediated copolymerization reaction involves three different monomers: N-(2-hydroxyethyl) acrylamide as spacer, AEMA as target for further fluorescence labeling, and the glycomonomers. Tolerant of aqueous systems, the RAFT agent used in the reaction is (4-cyanopentanoic acid)-4-dithiobenzoate. Low dispersities (≤1.32), predictable copolymer compositions, and high reproducibility of the polymerizations were observed among the products. Fluorescent polymers are obtained by modifying the glycopolymers with carboxyfluorescein succinimidyl ester targeting the primary amine functional groups on AEMA. Lectin-binding specificities of the resulting glycopolymers are verified by testing with corresponding agarose beads coated with specific glycoepitope recognizing lectins. Because of the ease of the synthesis, the tight control of the product compositions and the good reproducibility of the reaction, this protocol can be translated towards preparation of other RAFT-based glycopolymers with specific structures and compositions, as desired.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4545147 | PMC |
http://dx.doi.org/10.3791/52922 | DOI Listing |
Sci Bull (Beijing)
January 2025
Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China; Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Zhuhai MUST Science and Technology Research Institute, Macau University of Science and Technology, Macao 999078, China; Institute of Organic Optoelectronics (IOO), Jiangsu Industrial Technology Research Institute (JITRI), Suzhou 215200, China. Electronic address:
High-quality quantum dots (QDs) possess superior electroluminescent efficiencies and ultra-narrow emission linewidths are essential for realizing ultra-high definition QD light-emitting diodes (QLEDs). However, the synthesis of such QDs remains challenging. In this study, we present a facile high-temperature successive ion layer adsorption and reaction (HT-SILAR) strategy for the growth of precisely tailored ZnCdSe/ZnSe shells, and the consequent production of high-quality, large-particle, alloyed red CdZnSe/ZnCdSe/ZnSe/ZnS/CdZnS QDs.
View Article and Find Full Text PDFMolecules
January 2025
Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 702-701, Republic of Korea.
A thiazolo-pyrimidinone derivative library was developed through a facile solid-phase synthesis method. For the reaction, the thiazolo[4,5-]pyrimidin-7(6)-one structure was synthesized through efficient Thorpe-Ziegler and cyclization reactions. The thiazolo[4,5-]pyrimidin-7(6)-one derivative library with a diversity of three had a total of four synthesis steps and 57 compounds.
View Article and Find Full Text PDFMolecules
January 2025
State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
Metal-free materials have been proved to be promising replacements of traditional metal-based catalysts for advanced oxidation reactions. Carbon nitride was found to be able to activate HO and generate hydroxyl radicals (•OH). Nevertheless, the performance of carbon nitride is highly dependent on an external light source.
View Article and Find Full Text PDFFoods
January 2025
College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China.
Bisphenol A (BPA) is a typical environmental estrogen that is distributed worldwide and has the potential to pose a hazard to the ecological environment and human health. The development of an efficient and sensitive sensing strategy for the monitoring of BPA residues is of paramount importance. A novel electrochemical sensor based on carbon black and carbon nanofibers composite (CB/f-CNF)-assisted signal amplification has been successfully constructed for the amperometric detection of BPA in foods.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), College of Chemistry, Sichuan University, Chengdu 610064, China.
The development of bio-based flame retardants has garnered significant attention, however, significant challenges remain in achieving efficient flame retardancy and eco-friendly preparation methods. Herein, we propose a facile, atomic-efficient, and eco-friendly strategy for synthesizing a trinity chitosan-based flame retardant, phosphite-protonated chitosan (PCS). The chemical structure was systematically analyzed and the impact of varying degrees of protonation on the dissolution behavior and rheological properties were investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!