Highly carbonylated cellulose nanofibrous membranes utilizing maleic anhydride grafting for efficient lysozyme adsorption.

ACS Appl Mater Interfaces

‡State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.

Published: July 2015

Construction of adsorptive materials for simple, efficient, and high-throughput adsorption of proteins is critical to meet the great demands of highly purified proteins in biotechnological and biopharmaceutical industry; however, it has proven extremely challenging. Here, we report a cost-effective strategy to create carbonyl groups surface-functionalized nanofibrous membranes under mild conditions for positively charged protein adsorption. Our approach allows maleic anhydride to in situ graft on cellulose nanofibrous membranes (CMA) to construct adsorptive membranes with large surface area and tortuous porous structure. Thereby, the resultant CMA membranes exhibited high adsorption capacity of 160 mg g(-1), fast equilibrium within 12 h, and good reversibility to lysozyme. Moreover, the dynamic adsorption was performed under low pressure-drops (750 Pa), with a relatively high saturation adsorption amount of 118 mg g(-1), which matched well with the requirements for proteins purification. Considering the excellent adsorption performance of the as-prepared adsorptive membranes, this simple and intriguing approach may pave a way for the design and development of robust and cost-effective adsorption membranes to meet the great demands for fast and efficient adsorption of positively charged proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.5b04741DOI Listing

Publication Analysis

Top Keywords

nanofibrous membranes
12
adsorption
9
cellulose nanofibrous
8
maleic anhydride
8
meet great
8
great demands
8
positively charged
8
adsorptive membranes
8
membranes
7
highly carbonylated
4

Similar Publications

Tissue regeneration after a wound occurs through three main overlapping and interrelated stages namely inflammatory, proliferative, and remodelling phases, respectively. The inflammatory phase is key for successful tissue reconstruction and triggers the proliferative phase. The macrophages in the non-healing wounds remain in the inflammatory loop, but their phenotypes can be changed interactions with nanofibre-based scaffolds mimicking the organisation of the native structural support of healthy tissues.

View Article and Find Full Text PDF

Background: In clinical practice, imiquimod is used to treat Human Papillomavirus (HPV)-related lesions, such as condyloma and Cervical Intraepithelial Neoplasia (CIN). Metronidazole is the most commonly prescribed antibiotic for bacterial vaginosis. The study developed biodegradable imiquimod- and metronidazole-loaded nanofibrous mats and assessed their effectiveness for the topical treatment of cervical cancer, a type of HPV-related lesion.

View Article and Find Full Text PDF

In-vitro and in-vivo studies of Tridax procumbens leaf extract incorporated bilayer polycaprolactone/polyvinyl alcohol-chitosan electrospun nanofiber for wound dressing application.

Int J Biol Macromol

January 2025

Department of Physics, Amrita School of Physical Sciences, Coimbatore, Amrita Vishwa Vidyapeetham, India; Biomaterials Laboratory, Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, India. Electronic address:

This study was an attempt to fabricate an antibacterial wound dressing, which was a bilayered polycaprolactone / polyvinyl alcohol-chitosan (PCL/PVA-CS) nanofibrous membrane. Entrapping ethanolic leaf extract of Tridax procumbens L. (PCL/PVA-CS/Tp).

View Article and Find Full Text PDF

How to Deal with Pulpitis: An Overview of New Approaches.

Dent J (Basel)

January 2025

Department of Conservative Dentistry with Endodontics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-902 Bytom, Poland.

Traditional root canal therapy (RCT) effectively removes diseased or necrotic pulp tissue and replaces it with inorganic materials. Regenerative endodontics is an alternative to conventional RCT by using biologically based approaches to restore the pulp-dentin complex. This review explores emerging techniques, including autogenic and allogenic pulp transplantation, platelet-rich fibrin, human amniotic membrane scaffolds, specialized pro-resolving mediators, nanofibrous and bioceramic scaffolds, injectable hydrogels, dentin matrix proteins, and cell-homing strategies.

View Article and Find Full Text PDF

This study explores the preparation of lubricating oleo-dispersions using electrospun nanofibrous mats made from low-sulfonate lignin (LSL) and polycaprolactone (PCL). The rheological and tribological properties of the oleo-dispersions were significantly modulated for the first time through the exploration of LSL/PCL ratio and electrospinning conditions such as applied voltage, distance between the tip and collector, flow rate, ambient humidity, and collector configuration. Adequate uniform ultrathin fibers and Small-amplitude oscillatory shear (SAOS) functions of the oleo-dispersions, with storage modulus values ranging from 10 to 10 Pa at 25 °C, were obtained with a flow rate of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!