The effects of combat-related mild traumatic brain injury (mTBI): Does blast mTBI history matter?

J Trauma Acute Care Surg

From the Department of Orthopaedic Surgery/UPMC Sports Medicine Concussion Program, University of Pittsburgh Medical College Sports Medicine Concussion Program (A.P.K., M.W.C.), Pittsburgh, Pennsylvania; Office for Sport Concussion Research (R.E.), University of Arkansas, Fayetteville, Arkansas; Joint Trauma System (R.S.K.), US Army Institute of Surgical Research, Joint Base, San Antonio, Texas; and US Army Special Operations Command (R.H.L., S.K., P.J.B.), Fort Bragg, North Carolina; US Army Pacific (R.D.F.), Fort Shafter, Hawaii.

Published: October 2015

Background: The effects of mild traumatic brain injury (mTBI) have received significant attention since the beginning of the conflicts in Afghanistan and Iraq. Surprisingly, little is known about the temporal nature of neurocognitive impairment, mTBI, and posttraumatic stress (PTS) symptoms following combat-related mTBI. It is also unclear as to the role that blast exposure history has on mTBI and PTS impairments and symptoms. The purposes of this study were to examine prospectively the effects of mTBI on neurocognitive performance as well as mTBI and PTS symptoms among US Army Special Operations Command personnel and to study the influence of history of blast mTBI on these effects.

Methods: Eighty US Army Special Operations Command personnel with (n = 19) and without (n = 61) a history of blast-related mTBI completed the military version of the Immediate Post-concussion Assessment Cognitive Test (ImPACT), Post Concussion Symptom Scale (PCSS), and the PTSD Checklist (PCL) at baseline as well as 1 day to 7 days and 8 days to 20 days following a combat-related mTBI.

Results: Results indicated that verbal memory (p = 0.002) and processing speed (p = 0.003) scores were significantly lower and mTBI symptoms (p = 0.001) were significantly higher at 1 day to 7 days after injury compared with both baseline and 8 days to 20 days after injury. PTS remained stable across the three periods. Participants with a history of blast mTBI demonstrated lower verbal memory at 1 day to 7 days after mTBI compared with participants without a history of blast mTBI (p = 0.02).

Conclusion: Decreases in neurocognitive performance and increased mTBI symptoms are evident in the first 1 day to 7 days following combat-related mTBI, and a history of blast-related mTBI may influence these effects.

Level Of Evidence: Epidemiologic/prognostic study, level II.

Download full-text PDF

Source
http://dx.doi.org/10.1097/TA.0000000000000667DOI Listing

Publication Analysis

Top Keywords

mtbi
17
blast mtbi
16
day days
16
history blast
12
days days
12
mild traumatic
8
traumatic brain
8
brain injury
8
injury mtbi
8
mtbi history
8

Similar Publications

Background: Mild traumatic brain injury (mTBI) frequently results in persistent cognitive, emotional, and functional impairments, closely linked to disruptions in the default mode network (DMN). Understanding the mechanisms driving these network abnormalities is critical for advancing diagnostic and therapeutic strategies.

Methods: This study adopted a multimodal approach, combining functional connectivity (FC) analysis, diffusion tensor imaging (DTI), and gene expression profiling to investigate DMN disruptions in mTBI.

View Article and Find Full Text PDF

Background: Even patients with normal computed tomography (CT) head imaging may experience persistent symptoms for months to years after mild traumatic brain injury (mTBI). There is currently no good way to predict recovery and triage patients who may benefit from early follow-up and targeted intervention. We aimed to assess if existing prognostic models can be improved by serum biomarkers or diffusion tensor imaging metrics (DTI) from MRI, and if serum biomarkers can identify patients for DTI.

View Article and Find Full Text PDF

Background: Post-traumatic stress disorder (PTSD) and depression are common after mild traumatic brain injury (mTBI), but their biological drivers are uncertain. We therefore explored whether polygenic risk scores (PRS) derived for PTSD and major depressive disorder (MDD) are associated with the development of cognate TBI-related phenotypes.

Methods: Meta-analyses were conducted using data from two multicenter, prospective observational cohort studies of patients with mTBI: the CENTER-TBI study (ClinicalTrials.

View Article and Find Full Text PDF

The purpose of this review is to summarize the long-term cognitive, psychological, fluid biomarker, and neuroimaging outcomes following repetitive concussive and subconcussive blast exposures sustained through a military career. A review of the literature was conducted, with 450 manuscripts originally identified and 44 manuscripts ultimately included in the review. The most robust studies investigating how repetitive concussive and subconcussive exposures related to cognitive performance suggest there is no meaningful impact.

View Article and Find Full Text PDF

Athletes in collision sports frequently sustain repetitive head impacts (RHI), which, while not individually severe enough for a clinical mild traumatic brain injury (mTBI) diagnosis, can compromise neuronal organization by transferring mechanical energy to the brain. Although numerous studies target athletes with mTBI, there is a lack of longitudinal research on young collision sport participants, highlighting an unaddressed concern regarding cumulative RHI effects on brain microstructures. Therefore, this study aimed to investigate the microstructural changes in the brains' of high school rugby players due to repeated head impacts and to establish a correlation between clinical symptoms, cumulative effects of RHI exposure, and changes in the brain's microstructure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!