The wing venation is frequently used as a morphological marker to distinguish biological groups among insects. With geometric morphometrics, minute shape differences can be detected between closely related species or populations, making this technique useful for taxonomy. However, the direct influence of genetic differences on wing morphology has not been explored within colonies of social insects. Here, we show that the father's genotype has a direct effect on wing morphology in colonies of social wasps. Using geometric morphometrics on the venation pattern, we found significant differences in wing size and shape between patrilines of yellowjackets, taking allometry and measurement error into account. The genetic influence on wing size accounted for a small part of the overall size variation, but venation shape was highly structured by the differences between patrilines. Overall, our results showed a strong genetic influence on wing morphology likely acting at multiple levels of venation pattern development. This confirmed the pertinence of this marker for taxonomic purposes and suggests this phenotype as a potentially useful marker for phylogenies. This also raises doubts about the strength of selective pressures on this phenotype, which highlights the need to understand better the role of wing venation shape in insect flight.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4488467PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0130064PLOS

Publication Analysis

Top Keywords

genetic influence
12
wing morphology
12
size shape
8
wing venation
8
geometric morphometrics
8
differences wing
8
colonies social
8
venation pattern
8
wing size
8
influence wing
8

Similar Publications

The endocannabinoid system (ECS), regulating such processes as energy homeostasis, inflammation, and muscle function, centers around cannabinoid receptors, including CB1. These receptors are mainly located in the central nervous system and skeletal muscles. Hyperactivity of CB1 receptors is linked to metabolic disorders and chronic inflammation, highlighting their potential as therapeutic targets for muscle hypertrophy and metabolic health.

View Article and Find Full Text PDF

Gastric cancer is an aggressive malignancy characterized by significant clinical heterogeneity arising from complex genetic and environmental interactions. This study employed single-cell RNA sequencing, using the 10 × Genomics platform, to analyze 262,532 cells from gastric cancer samples, identifying 32 distinct clusters and 10 major cell types, including immune cells (e.g.

View Article and Find Full Text PDF

Exploring ferroptosis and miRNAs: implications for cancer modulation and therapy.

Mol Cell Biochem

January 2025

Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran.

Ferroptosis is a novel, iron-dependent form of non-apoptotic cell death characterized by the accumulation of lipid reactive oxygen species (ROS) and mitochondrial shrinkage. It is closely associated with the onset and progression of various diseases, especially cancer, at all stages, making it a key focus of research for developing therapeutic strategies. Numerous studies have explored the role of microRNAs (miRNAs) in regulating ferroptosis by modulating the expression of critical genes involved in iron metabolism and lipid peroxidation.

View Article and Find Full Text PDF

The underlying mechanisms of the association of bone health with depression - an experimental study.

Mol Biol Rep

January 2025

Medical Sociology and Psychobiology, Department of Health and Physical Activity, University of Potsdam, 14469, Potsdam, Germany.

Background: Depression constitutes a risk factor for osteoporosis, but underlying molecular and cellular mechanisms are not fully understood. MiRNAs influence gene expression and are carried by extracellular vesicles (EV), affecting cell-cell communication.

Aims: (1) Identify the difference in miRNA expression between depressed patients and healthy controls; (2) Analyze associations of these miRNAs with bone turnover markers; (3) Analyze target genes of differentially regulated miRNAs and predict associated pathways regarding depression and bone metabolism.

View Article and Find Full Text PDF

The role of canopy family proteins: biological mechanism and disease function.

Mol Biol Rep

January 2025

Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong An Road, Xi Cheng District, Beijing, 100050, China.

Canopy family proteins are highly sequence-conserved proteins with an N-terminal hydrophobic signal sequence, a unique pattern of six cysteine residues characteristic of the saposin-like proteins, and a C-terminal putative endoplasmic reticulum retention signal sequence. At present, the known canopy family proteins are canopy fibroblast growth factor signaling regulator 1 (CNPY1), CNPY2, CNPY3, and CNPY4. Despite similar structures, canopy family proteins regulate complex signal networks to participate in various biological processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!