Orientia tsutsugamushi, a causative pathogen of Scrub typhus, is a gram-negative intracellular bacterium. Outer membrane vesicles (OMVs) are produced from the membrane of bacteria and play many roles related to the survival of the pathogen. However, there have been no reports confirming whether O. tsutsugamushi indeed produce OMVs. O. tsutsugamushi boryong was cultured in ECV-304 cells for the purification of OMVs. Western blot analysis and immunoenrichment using anti-O. tsutsugamushi monoclonal antibody and electron microscopy were employed for identification and characterization of OMVs. We confirm the presence of OMVs derived from O. tsutsugamushi, and also found that those OMVs contain a major surface antigen of 56-kDa protein and variant immunogenic antigens.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4479938 | PMC |
http://dx.doi.org/10.3346/jkms.2015.30.7.866 | DOI Listing |
Sci Rep
December 2024
Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, 14A F. Joliot-Curie St., 50-383, Wrocław, Poland.
Iron and heme are essential nutrients for all branches of life. Pathogenic members of the Bacteroidota phylum, including Porphyromonas gingivalis, do not synthesize heme and rely on host hemoproteins for heme as a source of iron and protoporphyrin IX. P.
View Article and Find Full Text PDFBiomaterials
December 2024
School of Life Sciences, Faculty of Medicine, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin University, Tianjin, 300072, China.
In the immunosuppressive tumor microenvironment (TME), tumor-associated macrophages (TAMs) predominantly exhibit an immunosuppressive M2 phenotype, which facilitates tumor proliferation and metastasis. Although current strategies aimed at reprogramming TAMs hold promise, their sustainability and effectiveness are limited due to repeated injections. Herein, a bacterial therapy platform containing two engineered strains was developed.
View Article and Find Full Text PDFPoult Sci
December 2024
Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China. Electronic address:
Riemerella anatipestifer (R. anatipestifer, RA) is the etiological agent of duck serositis, an acute multisystemic disease in ducks that is globally distributed and causes serious economic losses in the duck industry. Despite exhibiting multidrug resistance, the transmission mechanism of its antibiotic resistance genes (ARGs) remains incompletely identified.
View Article and Find Full Text PDFMembranes (Basel)
December 2024
Electrochemistry Excellence Centre (ELEC), Materials & Chemistry Unit, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium.
Salinity gradient power (SGP) by reverse electrodialysis is a promising method for converting SGP into electricity. Instead of the conventional approach of using seawater and freshwater, an alternative method involves using highly concentrated salt solutions (brines) alongside seawater or brackish water. Key factors influencing SGP via reverse electrodialysis (SGP-RE) include the properties of ion exchange membranes, particularly their thickness.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
December 2024
The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
Purpose: N6-methyladenosine (m6A) modification, one of the most common epigenetic modifications in eukaryotic mRNA, has been shown to play a role in the development and function of the mammalian nervous system by regulating the biological fate of mRNA. METTL3, the catalytically active component of the m6A methyltransferase complex, has been shown to be essential in development of in the retina. However, its role in the mature retina remains elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!