Aims: CD36 is an important transporter of long-chain fatty acids (LCFAs) in the myocardium. As we have reported previously, CD36-deficient patients demonstrate a marked reduction in myocardial uptake of (123)I-15-(p-iodophenyl)-(R, S)-methyl pentadecanoic acid (BMIPP), which is an analog of LCFAs, while myocardial (18)F-fluorodeoxy-glucose (FDG) uptake is increased. However, it has not been clarified whether energy provision is preserved in patients with CD36 deficiency. The aims of the current study were to investigate the myocardial uptake of glucose and alterations in myocardial metabolites in wild-type (WT) and CD36 knockout (KO) mice.

Methods And Results: High-resolution positron emission tomography (PET) demonstrated markedly enhanced glucose uptake in KO mouse hearts compared with those of WT mice in real-time. The myocardial protein expression of glucose transporter protein 1 (GLUT1) was significantly enhanced in KO mice compared to WT mice, whereas that of GLUT4 was not altered. While the myocardial expression of genes involved in fatty acid metabolism did not increase in KO mice, that of genes related to glucose utilization compensatorily increased in KO mice. The metabolomic analysis of cardiac tissues revealed that the myocardial concentrations of ATP and phosphocreatine were maintained, even in KO mice. The concentration of 3-hydroxybutyric acid and mRNA expression of hydroxybutyrate dehydrogenase in the heart were significantly higher in KO than in WT mice.

Conclusion: These data suggest that high-energy phosphate might be preserved by the increased utilization of glucose and ketone bodies in CD36KO mouse hearts under conditions of deficient LCFA uptake.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.metabol.2015.05.017DOI Listing

Publication Analysis

Top Keywords

myocardial
8
energy provision
8
provision preserved
8
preserved increased
8
increased utilization
8
utilization glucose
8
glucose ketone
8
ketone bodies
8
cd36 knockout
8
myocardial uptake
8

Similar Publications

» Patients with diabetes mellitus (DM) undergoing shoulder arthroplasty (SA) have a unique risk profile, which must be considered by clinicians.» The presence of DM as a comorbidity is associated with longer length of stay following SA, greater likelihood of nonhome discharge, and a higher rate of 90-day readmission.» Though the incidence is low, patients with DM are at an increased risk of serious postoperative cardiovascular complications, such as pulmonary embolism, venous thromboembolism, and myocardial infarction.

View Article and Find Full Text PDF

Nucleosome repositioning in cardiac reprogramming.

PLoS One

January 2025

Mandel Center for Heart and Vascular Research, The Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC, United States of America.

Early events in the reprogramming of fibroblasts to cardiac muscle cells are unclear. While various histone undergo modification and re-positioning, and these correlate with the activity of certain genes, it is unknown if these events are causal or happen in response to reprogramming. Histone modification and re-positioning would be expected to open up chromatin on lineage-specific genes and this can be ascertained by studying nucleosome architecture.

View Article and Find Full Text PDF

Aims: The REDUCE-AMI trial showed that beta-blockers in patients with preserved left ventricular ejection fraction (LVEF) after acute myocardial infarction (AMI) had no effect on mortality or cardiovascular outcomes. The aim of this substudy was to evaluate whether global longitudinal strain (GLS) is a better prognostic marker than LVEF, and if beta-blockers have a beneficial effect in patients with decreased GLS.

Methods And Results: REDUCE-AMI was a registry-based randomized clinical trial.

View Article and Find Full Text PDF

TiO(OH) Nanosheets with Catalytic Antioxidative Activity Alleviate Oxidative Injury in Diabetic Cardiomyopathy.

J Am Chem Soc

January 2025

State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China.

Diabetic cardiomyopathy (DCM) is one of the most lethal complications of diabetes and is induced by the overproduction of reactive oxygen species (ROS) in cardiomyocytes due to sustained high glucose levels, leading to cardiac oxidative damage and final sudden death. Drugs and antioxidants currently applied to the clinical therapy of DCM fail to scavenge ROS efficiently, resulting in compromised therapeutic efficacy. Herein, a nanocatalytic antioxidative therapeutic strategy is proposed for DCM treatment.

View Article and Find Full Text PDF

Importance: Perioperative bleeding is common in general surgery. The POISE-3 (Perioperative Ischemic Evaluation-3) trial demonstrated efficacy of prophylactic tranexamic acid (TXA) compared with placebo in preventing major bleeding without increasing vascular outcomes in noncardiac surgery.

Objective: To determine the safety and efficacy of prophylactic TXA, specifically in general surgery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!