The present study examined the role of reversion-inducing cysteine-rich protein with Kazal motifs (RECK) promoter hypermethylation as a causative factor in metastasis of osteosarcoma. Using human pathological samples, it is demonstrated that RECK, a cysteine protease that reversibly regulates expression of matrix metalloproteases like matrix metallopeptidase 9 (MMP9), is transcriptionally inhibited in osteosarcoma, especially metastatic variants. This result comes from its promoter hypermethylation, as evaluated in the present study by methylation-specific PCR reaction. The expression of RECK was also significantly diminished in the metastatic variants of osteosarcoma. This downregulation of RECK in advanced grades of osteosarcoma and metastatic grades was also associated with the increased expression of invadosome-specific markers like MMP9, phospho-FAK, and integrins, suggesting the complex contributions of RECK in the prevention of metastasis and its downregulation as a causative factor in osteosarcoma metastasis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13277-015-3688-4DOI Listing

Publication Analysis

Top Keywords

promoter hypermethylation
12
cysteine protease
8
metastasis osteosarcoma
8
causative factor
8
osteosarcoma metastatic
8
metastatic variants
8
reck
6
osteosarcoma
6
hypermethylation cysteine
4
protease reck
4

Similar Publications

Unlabelled: In most cancers, including endometrial cancer, tumor suppressor genes harboring inactivating mutations have been systematically cataloged. However, locus-specific epigenetic alterations contributing to cancer initiation and progression remain only partly described, creating knowledge gaps about functionally significant tumor suppressors and underlying mechanisms associated with their inactivation. Here, we show that PAX2 is an endometrial tumor suppressor recurrently inactivated by a distinct epigenetic reprogramming event not associated with promoter hypermethylation.

View Article and Find Full Text PDF

Genome-wide analysis reveals porcine LIFR regulated by DNA methylation promotes the implantation process via the STAT3 signaling.

Int J Biol Macromol

January 2025

Colleges of Animal Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China. Electronic address:

Embryo-uterine interaction during embryo implantation depends on the coordinated expression of numerous genes in the receptive endometrium. While DNA methylation is known to play a significant role in controlling gene expression, specific molecular mechanisms underlying this regulatory event remain elusive in early porcine pregnancy. Here, we investigated the genome-wide DNA methylation landscape in the Yorkshire and Meishan pig's endometrium.

View Article and Find Full Text PDF

Bisphenol A alters JUN promoter methylation, impairing steroid metabolism in placental cells and linking to sub-representative phenotypes.

Gene

January 2025

School of Life Sciences, Fudan University, Shanghai 200433, China; MOE Engineering Research Center of Gene Technology, School of Life Sciences, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200433, China. Electronic address:

Bisphenol A (BPA) is a widely used industrial compound commonly found in various everyday plastic products. Known for its endocrine-disrupting properties, BPA can enter the human body through multiple pathways. Prenatal exposure to BPA not only disrupts placental structure and function but also interferes with normal steroid metabolism.

View Article and Find Full Text PDF

Epigenetic silencing of promotes laryngeal squamous cell carcinoma development by inhibiting the Hippo pathway.

Oncol Rep

February 2025

Department of Otolaryngology Head & Neck Surgery, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China.

Laryngeal squamous cell carcinoma (LSCC), which represents a significant proportion of head and neck squamous cell carcinoma cases, is often diagnosed at advanced stages, underscoring the urgent need for effective biomarkers and therapeutic targets. Junctional adhesion molecule 3 () is implicated in various types of cancer; however, its role in LSCC remains unclear. Therefore, the present study aimed to investigate the epigenetic regulation and tumor‑suppressive functions and mechanisms of in LSCC.

View Article and Find Full Text PDF

Introduction: Preterm birth (PTB) is associated with newborn morbidity and mortality. DNA methylation plays an important role in the development of fetus, thus can also serve as an epigenetic biomarker. Limited epigenetic studies were conducted in regard to PTB.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!