This study demonstrates the use of Liquid Crystal coated Polaroid Glass Electrode (LCPGE) material collected from disposed liquid-crystal display (LCD) computer monitor as electrodes in microbial fuel cell (MFC) for the simultaneous reduction/recovery of Cr(+6) from chromium wastewater. Fourier transform infrared spectrum (FT-IR) confirms the presence of NH2, CN, CO and OC and/or COC functional groups in LCPGE. An excellent electrochemical performance with distinct redox peaks were observed in cyclic voltammetry test (100 mV/s). The maximum current density of 110 mA/m(2) (10 mW/m(2)) was achieved by operating MFC in batch mode. At the cathode LCPGE (10.5 cm(2)) interface, toxic Cr(+6) ions readily accepted electrons and formed nontoxic Cr2O3 as confirmed by FT-IR and X-ray photoelectron spectroscopy analysis. Moreover, electrochemical impedance analysis shows that bacteria were readily attached to the surface of LCPGE (10.5 cm(2)) within 24 h in a Bioelectrochemical System (BES).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2015.06.078 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!