Heat-driven ionic gate nanochannels have been recently demonstrated, which exploit temperature-responsive polymer brushes based on wettability. These heat-sensing artificial nanochannels operate in a broad temperature-response boundary and fixed liquid cell environment, thereby experiencing limited system operation in the flat and solid state. Here we have developed a patchable and flexible heat-sensing artificial ionic gate nanochannel, which can operate in the range of the human body temperature. A wax-elastic copolymer, coated onto a commercial nanopore membrane by a controlled-vacuum filtration method, was used for the construction of temperature-responsive nanopores. The robust and flexible nanochannel heat sensor, which is combined with an agarose gel electrolyte, can sustain reversible thermo-responsive ionic gating based on the volumetric work of the wax-composite layers in a selective temperature range. The ionic current is also effectively distinguished in the patchable bandage-type nanochannel for human heat-sensing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5nr02743h | DOI Listing |
bioRxiv
December 2024
Istanbul Medipol University, School of Engineering and Natural Sciences, Department of Biomedical Engineering, 34810, Istanbul, Turkey.
G protein-coupled receptor (GPCR) signaling is terminated by arrestin binding to a phosphorylated receptor. Binding propensity has been shown to be modulated by stabilizing the pre-activated state of arrestin through point mutations or C-tail truncation. Here, we hypothesize that pre-activated rotated states can be stabilized by small molecules, and this can promote binding to phosphorylation-deficient receptors, which underly a variety of human disorders.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
College of Photonics, National Yang Ming Chiao Tung University, 301 Gaofa 3rd Road, Tainan, 71150, Taiwan.
Nanoscale light sources are demanded vigorously due to rapid development in photonic integrated circuits (PICs). III-V semiconductor nanowire (NW) lasers have manifested themselves as indispensable components in this field, associated with their extremely compact footprint and ultra-high optical gain within the 1D cavity. In this study, the carrier concentrations of indium phosphide (InP) NWs are actively controlled to modify their emissive properties at room temperature.
View Article and Find Full Text PDFSmall Methods
December 2024
Organic Nanoelectronics Laboratory and KNU Institute for Nanophotonics Applications (KINPA), Department of Chemical Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea.
Achieving high retention of memory state is crucial in artificial synapse devices for neuromorphic computing systems. Of various memorizing methods, a charge-trapping method provides fast response times when it comes to the smallest size of electrons. Here, for the first time, it is demonstrated that trivalent molecular bridges with three ionic bond sites in the polymeric films can efficiently trap electrons in the organic synaptic transistors (OSTRs).
View Article and Find Full Text PDFACS Cent Sci
November 2024
Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.
Structural gating provides a molecular means to transfer electrons preferentially in one desired vectorial direction, a behavior needed for applications in artificial photosynthesis. At the interfaces utilized herein, visible-light absorption by a transition metal complex a "structural gate" by planarization of otherwise rotating phenyl rings in phenylene ethynylene (PE) bridge units. Planarization provides a conjugated pathway for electron flow toward a conductive oxide surface.
View Article and Find Full Text PDFAdv Sci (Weinh)
November 2024
Department of Engineering, Electrical Engineering Division, University of Cambridge, Cambridge, CB3 0FA, UK.
The transient behavior of organic electrochemical transistors (OECTs) is complex due to mixed ionic-electronic properties that play a central role in bioelectronics and neuromorphic applications. Some works applied impedance spectroscopy in OECTs for understanding transport properties and the frequency-dependent response of devices. The transversal admittance (drain current vs gate voltage) is used for sensing applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!