Sphingosine 1-Phosphate Produced by Sphingosine Kinase 2 Intrinsically Controls Platelet Aggregation In Vitro and In Vivo.

Circ Res

From the Medizinische Klinik und Poliklinik I, Klinikum der Universität München (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., V.B., J.B., I.S., M.L., K.R.L., S.M.), Department of Applied Physics, Center for NanoSciences (K.R.L.), and Walther-Straub-Institute of Pharmacology and Toxicology (M.M.y.S.), Ludwig-Maximilians-Universität, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany (N.U., F.G., M.-L.v.B., S.C., F.R., M.O., J.B., I.S., M.L., M.M.y.S., S.M.); Heart Failure Institute, Research Center for Translational Medicine and Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China (L.Z.); Institute of Pharmacology, University of Bern, Bern, Switzerland (A.H.); Pharmazentrum Frankfurt/ZAFES, Goethe University Hospital, Frankfurt am Main, Germany (J.M.P.); and Preclinical Safety (D.L., E.P.), and Autoimmunity, Transplantation and Inflammation (C.B., A.B., T.B.), Novartis Institutes for BioMedical Research, Basel, Switzerland.

Published: July 2015

Rationale: Platelets are known to play a crucial role in hemostasis. Sphingosine kinases (Sphk) 1 and 2 catalyze the conversion of sphingosine to the bioactive metabolite sphingosine 1-phosphate (S1P). Although platelets are able to secrete S1P on activation, little is known about a potential intrinsic effect of S1P on platelet function.

Objective: To investigate the role of Sphk1- and Sphk2-derived S1P in the regulation of platelet function.

Methods And Results: We found a 100-fold reduction in intracellular S1P levels in platelets derived from Sphk2(-/-) mutants compared with Sphk1(-/-) or wild-type mice, as analyzed by mass spectrometry. Sphk2(-/-) platelets also failed to secrete S1P on stimulation. Blood from Sphk2-deficient mice showed decreased aggregation after protease-activated receptor 4-peptide and adenosine diphosphate stimulation in vitro, as assessed by whole blood impedance aggregometry. We revealed that S1P controls platelet aggregation via the sphingosine 1-phosphate receptor 1 through modulation of protease-activated receptor 4-peptide and adenosine diphosphate-induced platelet activation. Finally, we show by intravital microscopy that defective platelet aggregation in Sphk2-deficient mice translates into reduced arterial thrombus stability in vivo.

Conclusions: We demonstrate that Sphk2 is the major Sphk isoform responsible for the generation of S1P in platelets and plays a pivotal intrinsic role in the control of platelet activation. Correspondingly, Sphk2-deficient mice are protected from arterial thrombosis after vascular injury, but have normal bleeding times. Targeting this pathway could therefore present a new therapeutic strategy to prevent thrombosis.

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCRESAHA.115.306901DOI Listing

Publication Analysis

Top Keywords

sphingosine 1-phosphate
12
platelet aggregation
12
sphk2-deficient mice
12
controls platelet
8
s1p
8
s1p platelets
8
secrete s1p
8
protease-activated receptor
8
receptor 4-peptide
8
4-peptide adenosine
8

Similar Publications

Whole blood concentrations of fingolimod and its pharmacologically active metabolite fingolimod phosphate obtained during routine health care of patients with multiple sclerosis.

Mult Scler Relat Disord

December 2024

Department of Clinical Pharmacology, Faculty of Medicine, University of Ostrava; Department of Clinical Pharmacology, Institute of Laboratory Medicine, University Hospital Ostrava, Czech Republic.

Background: Fingolimod is a first-in-class, orally administered drug indicated for the treatment of relapsing-remitting multiple sclerosis. It acts as an immunomodulator, is classified as a "disease-modifying therapy", and its main mechanism of action is the modulation of sphingosine-1-phosphate receptors. In this prospective pilot study, whole blood concentrations of fingolimod and fingolimod phosphate obtained during routine health care were measured.

View Article and Find Full Text PDF

Epilepsy is one of the common chronic neurological diseases, affecting more than 70 million people worldwide. The brains of people with epilepsy exhibit a pathological and persistent propensity for recurrent seizures. Epilepsy often coexists with cardiovascular disease, cognitive dysfunction, depression, etc.

View Article and Find Full Text PDF

Sex-Dependent Efficacy of Sphingosine-1-Phosphate Receptor Agonist FTY720 in Mitigating Huntington's Disease.

Pharmacol Res

December 2024

Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, N-0372 Oslo, Norway; Institute of Nutritional Medicine (INUM) and Lübeck Institute of Dermatology (LIED), University of Lübeck (UzL) and University Medical Center Schleswig-Holstein (UKSH), Ratzeburger Allee 160, D-23538 Lübeck, Germany; Faculty of Medicine and Life Sciences, University of Latvia, Jelgavas iela 3, LV-1004 Rīga, Latvia; School of Neurobiology, Biochemistry and Biophysics, The Georg S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, IL-6997801, Israel. Electronic address:

Huntington's disease (HD) is a debilitating neurodegenerative disorder characterized by severe motor deficits, cognitive decline and psychiatric disturbances. An early and significant morphological hallmark of HD is the activation of astrocytes triggered by mutant huntingtin, leading to the release of inflammatory mediators. Fingolimod (FTY), an FDA-approved sphingosine-1-phosphate (S1P) receptor agonist is used to treat multiple sclerosis (MS), a neuroinflammatory disease, and has shown therapeutic promise in other neurological conditions.

View Article and Find Full Text PDF

Structural insights into the engagement of lysophosphatidic acid receptor 1 with different G proteins.

J Struct Biol

December 2024

Advanced Research Institute, Institute of Science Tokyo, 1-5-45 Yushima Bunkyo-ku 113-8510, Tokyo, Japan. Electronic address:

Lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) are bioactive lysophospholipids derived from cell membranes that activate the endothelial differentiation gene family of G protein-coupled receptors. Activation of these receptors triggers multiple downstream signaling cascades through G proteins such as Gi/o, Gq/11, and G12/13. Therefore, LPA and S1P mediate several physiological processes, including cytoskeletal dynamics, neurite retraction, cell migration, cell proliferation, and intracellular ion fluxes.

View Article and Find Full Text PDF

The role of sphingolipid rheostat in the adult-type diffuse glioma pathogenesis.

Front Cell Dev Biol

December 2024

Department of Medical Chemistry, Biochemistry and Clinical Chemistry, School of Medicine, University of Zagreb, Zagreb, Croatia.

Gliomas are highly aggressive primary brain tumors, with glioblastoma multiforme being the most severe and the most common one. Aberrations in sphingolipid metabolism are a hallmark of glioma cells. The sphingolipid rheostat represents the balance between the pro-apoptotic ceramide and pro-survival sphingosine-1-phosphate (S1P), and in gliomas it is shifted toward cell survival and proliferation, promoting gliomas' aggressiveness, cellular migration, metastasis, and invasiveness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!