Organic chromophores of total organic carbon (TOC) and those of iron (Fe) contribute to the color of water, but the relative contributions of colored organic carbon (COC%) and Fe (Fe%) are poorly known. In this study, we unraveled Fe% and COC% in 6128 unfiltered water samples collected from 94 Finnish river sites of contrasting catchment properties. According to regression analysis focusing on TOC alone, on average 84% of the mean TOC consisted of COC, while 16% was non-colored or below the color-detection limit. COC and Fe were much more important sources of color than phytoplankton (chlorophyll a as a proxy) or non-algal particles (suspended solids as a proxy). When COC and Fe were considered as the only two sources of color, COC% ranged from 16.8% to 99.5% (mean 71%) and Fe% from 0.5% to 83.2% (mean 29%). Similar Fe% and COC% values were obtained when color was estimated from the absorption coefficients of COC and Fe at 490 nm. Fe% increased as a function of the concentration of Fe and was well predicted by the TOC-to-Fe mass ratio. In 608 samples with TOC-to-Fe ratios of <4.5, Fe dominated the color. TOC-to-Fe ratios varied widely within most sites, but in relation to hydrology. In catchments with a peatland coverage of >30%, peak flow exported elevated amounts of TOC relative to Fe and resulted in a high COC%. Base flow, instead, mobilized elevated amounts Fe relative to TOC and resulted in a high Fe%. In a catchment covered with 31% of agricultural fields, peak flow transported eroded soil particles high in Fe and thus resulted in a high Fe%, while during base flow the water was high in COC%. This study demonstrated that Fe% and COC% vary widely in river water depending on the catchment properties and hydrology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2015.06.092 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!