Two types of electrical and mechanical responses to 1 mumol/l ryanodine, depending on the intracellular calcium load, were observed in rabbit papillary muscles. In a normal calcium solution, ryanodine induced a transient decline followed by a stable increase in the developed force (by 20 +/- 5% of the pretreatment level; n = 30) and prolonged the action potential (AP). The positive ryanodine response showed an increased time-to-peak force and was completely suppressed by 2 mumol/l nifedipine, partially blocked by 50 mumol/l tetracaine (Ca2+ release blocker), but greatly potentiated by 20 mmol/l CsCl or (-) Bay R 5414 which prolonged the AP. The prolonged time-to-peak force of the positive ryanodine response was shortened by procedures raising the content of Ca2+ in the sarcoplasmic reticulum (SR). It is suggested that the initial decline in the force amplitude results from Ca2+ leakage from the SR which is further compensated for by an elevation of both the transmembrane Ca2+ entry and intracellular Ca2+ release. In calcium overloaded myocardium, 1 mumol/l ryanodine caused irreversible contracture and dramatic AP shortening, explained by a massive Ca2+ release from the overloaded SR into the cytoplasm. It is concluded that the calcium content in the SR is the main modulator of the electrical and mechanical effects of ryanodine in ventricular myocardium.

Download full-text PDF

Source

Publication Analysis

Top Keywords

ca2+ release
12
intracellular calcium
8
calcium load
8
electrical mechanical
8
mumol/l ryanodine
8
positive ryanodine
8
ryanodine response
8
time-to-peak force
8
ryanodine
7
ca2+
6

Similar Publications

Allergen-induced activation of epithelial P2Y receptors promotes ATP exocytosis and type 2 immunity in airways.

J Allergy Clin Immunol

January 2025

Departments of Animal Science, Integrative Biology and Physiology, University of Minnesota,St. Paul, MN, 55108. Electronic address:

Background: Environmental allergens induce the release of danger signals from the airway epithelium that trigger type 2 immune responses and promote airway inflammation.

Objective: To investigate the role of allergen-stimulated P2Y receptor activation in regulating ATP, IL-33 and DNA release by human bronchial epithelial (hBE) cells and mouse airways.

Methods: hBE cells were exposed to Alternaria alternata extract and secretion of ATP, IL-33 and DNA were studied in vitro.

View Article and Find Full Text PDF

Enhanced mechanical properties and in vitro bioactivity of silicon nitride ceramics with SiO, YO, and AlO as sintering aids.

J Mech Behav Biomed Mater

January 2025

School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China. Electronic address:

Silicon nitride (Si₃N₄) ceramics exhibit excellent mechanical properties and biocompatibility, making them highly suitable for biomedical applications, particularly in implants. In this study, the mechanical properties and bioactivity of Si₃N₄ ceramics with varying amounts of Y₂O₃-Al₂O₃-SiO₂ sintering aids were investigated. Increasing the sintering additive content from 4 wt% to 8 wt% substantially improved the bulk density of the ceramics, leading to notable enhancements in mechanical properties.

View Article and Find Full Text PDF

Plants deploy cellular Ca2+ elevation as a signal for environmental stress signaling. Extracellular ATP (eATP) is released into the extracellular matrix when cells are wounded. DOES NOT RESPOND TO NUCLEOTIDES 1 (DORN1), a key legume-type lectin receptor, senses and binds eATP and activates Ca2+ signaling.

View Article and Find Full Text PDF

The decline in autophagy disrupts homeostasis in skin cells, leading to oxidative stress, energy deficiency, and inflammation-all key contributors to skin photoaging. Consequently, activating autophagy has become a focal strategy for delaying skin photoaging. Natural plants are rich in functional molecules and widely used in the development of anti-photoaging cosmetics.

View Article and Find Full Text PDF

The Anti-Human P2X7 Monoclonal Antibody (Clone L4) Can Mediate Complement-Dependent Cytotoxicity of Human Leukocytes.

Eur J Immunol

January 2025

Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia.

P2X7 is an extracellular adenosine 5'-triphosphate (ATP)-gated cation channel that plays various roles in inflammation and immunity. P2X7 is present on peripheral blood monocytes, dendritic cells (DCs), and innate and adaptive lymphocytes. The anti-human P2X7 monoclonal antibody (mAb; clone L4), used for immunolabelling P2X7 or blocking P2X7 activity, is a murine IgG2 antibody, but its ability to mediate complement-dependent cytotoxicity (CDC) is unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!