A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Report of improved performance in Talbot-Lau phase-contrast computed tomography. | LitMetric

Report of improved performance in Talbot-Lau phase-contrast computed tomography.

Med Phys

Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen Centre for Astroparticle Physics (ECAP), Radiation and Detector Physics Group, Erwin-Rommel-Str. 1, 91058 Erlangen, Germany.

Published: June 2015

Purpose: Many expectations have been raised since the use of conventional x-ray tubes on grating-based x-ray phase-contrast imaging. Despite a reported increase in contrast-to-noise ratio (CNR) in many publications, there is doubt on whether phase-contrast computed tomography (CT) is advantageous in clinical CT scanners in vivo. The aim of this paper is to contribute to this discussion by analyzing the performance of a phase-contrast CT laboratory setup.

Methods: A phase-contrast CT performance analysis was done. Projection images of a phantom were recorded, and image slices were reconstructed using standard filtered back projection methods. The resulting image slices were analyzed by determining the CNRs in the attenuation and phase image. These results were compared to analytically calculated expectations according to the already published phase-contrast CT performance analysis by Raupach and Flohr [Med. Phys. 39, 4761-4774 (2012)]. There, a severe mistake was found leading to wrong predictions of the performance of phase-contrast CT. The error was corrected and with the new formulae, the experimentally obtained results matched the analytical calculations.

Results: The squared ratios of the phase-contrast CNR and the attenuation CNR obtained in the authors' experiment are five- to ten-fold higher than predicted by Raupach and Flohr [Med. Phys. 39, 4761-4774 (2012)]. The effective lateral spatial coherence length deduced outnumbers the already optimistic assumption of Raupach and Flohr [Med. Phys. 39, 4761-4774 (2012)] by a factor of 3.

Conclusions: The authors' results indicate that the assumptions made in former performance analyses are pessimistic. The break-even point, when phase-contrast CT outperforms attenuation CT, is within reach even with realistic, nonperfect gratings. Further improvements to state-of-the-art clinical CT scanners, like increasing the spatial resolution, could change the balance in favor of phase-contrast computed tomography even more. This could be done by, e.g., quantum-counting pixel detectors with four-fold smaller pixel pitches.

Download full-text PDF

Source
http://dx.doi.org/10.1118/1.4921022DOI Listing

Publication Analysis

Top Keywords

phase-contrast computed
12
computed tomography
12
raupach flohr
12
flohr [med
12
[med phys
12
phys 4761-4774
12
4761-4774 2012]
12
phase-contrast
10
clinical scanners
8
performance phase-contrast
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!