Previous studies have implicated erythropoietin (EPO) signaling in the regulation of glucose metabolism. Whether EPO can be used treat diabetes and the underlying mechanism remain to be elucidated. The present study aimed to investigate whether EPO affects glucose metabolism, and the underlying mechanisms, in experimental diabetic rats. The effects of EPO (300 U/kg three times a week for 4 weeks) on glucose metabolism, hematopoietic function, blood selenium content and the ultrastructure of pancreatic β‑cells were investigated in low dose (25 mg/kg body weight) streptozotocin‑induced experimental diabetic rats provided with a high‑fat diet. The results demonstrated that EPO significantly decreased the fasting blood glucose, the area under the curve of the oral glucose tolerance and insulin tolerance tests and L‑alanine gluconeogenesis. Ultrastructural examination of the pancreatic islets revealed that EPO prevented the dysfunction of pancreatic β‑cells in experimental diabetic rats, ameliorated cytoplasmic vacuolation and fragmentation of mitochondria, and increased the number of secretory granules. EPO administration increased the activities of superoxide dismutase and glutathione peroxidase, and decreased the level of malondialdehyde. Additionally, EPO increased blood selenium in the diabetic rats and produced a hematopoietic effect. These results indicated that EPO modulated glucose metabolism and improved pancreatic β‑cells damage by increasing anti‑oxidation. The detailed mechanisms underlying these effects require further investigation.

Download full-text PDF

Source
http://dx.doi.org/10.3892/mmr.2015.4006DOI Listing

Publication Analysis

Top Keywords

glucose metabolism
20
diabetic rats
20
experimental diabetic
16
pancreatic β‑cells
12
epo
9
blood selenium
8
glucose
7
metabolism
5
pancreatic
5
diabetic
5

Similar Publications

Background: Hypertension (HTN) is a global public health concern and a major risk factor for cardiovascular disease (CVD) and mortality. Insulin resistance (IR) plays a crucial role in HTN-related metabolic dysfunction, but its assessment remains challenging. The triglyceride-glucose (TyG) index and its derivatives (TyG-BMI, TyG-WC, and TyG-WHtR) have emerged as reliable IR markers.

View Article and Find Full Text PDF

Background: Olaparib is a relatively new poly(ADP-ribose) polymerase inhibitor (PARPi) administered to ovarian cancer (OC) patients with a complete or partial response to first-line chemotherapy. One of the metabolic side effects of olaparib is the disruption of glucose homeostasis, often resulting in hyperglycemia The study was a retrospective analysis of olaparib-induced hyperglycemia in OC patients with initial normoglycemia following the first, second, and third month of olaparib treatment METHODS: The study involved 32 OC patients, classified into three groups according to their Body Mass Index (BMI): normal BMI (BMI 18.5-24.

View Article and Find Full Text PDF

Levilactobacillus brevis YT108, identified for its ability to metabolize prebiotic xylo-oligosaccharides (XOS), emerges as a candidate for probiotic use in synbiotic food formulations. This study aimed to investigate the metabolic and genomic traits associated with XOS metabolism in YT108 and to assess its probiotic attributes through whole genome sequencing and in vitro assays. Strain YT108 exhibited robust growth kinetics on XOS as the sole carbon source, with a growth profile comparable to that on glucose, achieving a pH reduction to 4.

View Article and Find Full Text PDF

The hypoglycemic effects of nateglinide (NTG) were examined in rats with acute peripheral inflammation (API) induced by carrageenan treatment, and the mechanisms accounting for altered hypoglycemic effects were investigated. NTG was administered through the femoral vein in control and API rats, and its plasma concentration profile was characterized. The time courses of the changes in plasma glucose and insulin levels were also examined.

View Article and Find Full Text PDF

In most cases, the diagnosis of diabetes in animal models is based solely on blood glucose levels. While hemoglobin A1c (HbA1c) is widely used in the diagnosis of diabetes in humans, it is rarely measured in mice in diabetes research. This is thought to be because there are no established reference values for mouse HbA1c, as well as the fact that there are very few reports on the variability and reproducibility of measurements taken using different devices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!